Skip to main content
×
×
Home

Excess Mortality, Hospital Stay, and Cost Due to Candidemia: A Case-Control Study Using Data From Population-Based Candidemia Surveillance

  • Juliette Morgan (a1), Martin I. Meltzer (a1), Brian D. Plikaytis (a1), Andre N. Sofair (a2), Sharon Huie-White (a2), Steven Wilcox (a3), Lee H. Harrison (a4), Eric C. Seaberg (a4), Rana A. Hajjeh (a1) and Steven M. Teutsch (a5)...
Abstract
Objective:

To determine the mortality, hospital stay, and total hospital charges and cost of hospitalization attributable to candidemia by comparing patients with candidemia with control-patients who have otherwise similar illnesses. Prior studies lack broad patient and hospital representation or cost-related information that accurately reflects current medical practices.

Design:

Our case-control study included case-patients with candidemia and their cost-related data, ascertained from laboratory-based candidemia surveillance conducted among all residents of Connecticut and Baltimore and Baltimore County, Maryland, during 1998 to 2000. Control-patients were matched on age, hospital type, admission year, discharge diagnoses, and duration of hospitalization prior to candidemia onset.

Results:

We identified 214 and 529 sets of matched case-patients and control-patients from the two locations, respectively. Mortality attributable to candidemia ranged between 19% and 24%. On multivariable analysis, candidemia was associated with mortality (OR, 5.3 for Connecticut and 8.5 for Baltimore and Baltimore County; P < .05), whereas receiving adequate treatment was protective (OR, 0.5 and 0.4 for the two locations, respectively; P < .05). Candidemia itself did not increase the total hospital charges and cost of hospitalization; when treatment status was accounted for, having received adequate treatment for candidemia significantly increased the total hospital charges and cost of hospitalization ($6,000 to $29,000 and $3,000 to $22,000, respectively) and the length of stay (3 to 13 days).

Conclusion:

Our findings underscore the burden of candidemia, particularly regarding the risk of death, length of hospitalization, and cost associated with treatment (Infect Control Hosp Epidemiol 2005;26:540-547).

Copyright
Corresponding author
Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mail-stop C-09, Atlanta, GA 30333.JMorgan1@cdc.gov
References
Hide All
1.Beck-Sague, CM, Jarvis, WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. J Infect Dis 1993;167:12471251.
2.Fisher-Hoch, SP, Hutwagner, L. Opportunistic candidiasis: an epidemic of the 1980s. Clin Infect Dis 1995;21:897904.
3.Pittet, D, Wenzel, RP. Nosocomial bloodstream infections: secular trends in rate, mortality, and contribution to total hospital deaths. Arch Intern Med 1995;155:11771184.
4.Trick, WE, Fridkin, SK, Edwards, JR, Hajjeh, RA, Gaynes, RP. Secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989-1999. Clin Infect Dis 2002; 35:627630.
5.Hajjeh, RA, Sofair, AN, Harrison, LH, et al. Fluconazole resistance among Candida bloodstream isolates: incidence and correlation with outcome from a population-based study. Presented at the 39th Annual Meeting of the Infectious Diseases Society of America; October 2528, 2001; San Francisco, CA.
6.Pfaller, MA, Jones, RN, Messer, SA, Edmond, MB, Wenzel, RP. National surveillance of nosocomial blood stream infection due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE program. Diagn Microbiol Infect Dis 1998;31:327332.
7.Jarvis, WR. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis 1995;20:15261530.
8.Edmond, MB, Wallace, SE, McClish, DK, Pfaller, MA, Jones, RN, Wenzel, RP. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 1999;29:239244.
9.Pinner, RW, Teutsch, SM, Simonsen, L, et al.Trends in infectious diseases mortality in the United States. JAMA 1996;275:189193.
10.Pittet, D, Li, N, Woolson, RF, Wenzel, RP. Microbiologic factors influencing the outcome of nosocomial bloodstream infections: a 6-year validated, population-based model. Clin Infect Dis 1997;24:10681078.
11.Pittet, D, Tarara, D, Wenzel, RP. Nosocomial bloodstream infection in critically ill patients: excess length of stay, extra costs, and attributable mortality. JAMA 1994;271:15981601.
12.Wey, SB, Motomi, M, Pfaller, MA, Woolson, RF, Wenzel, RP. Hospital-acquired candidemia: the attributable mortality and excess length of stay. Arch Intern Med 1988;148:26422645.
13.Rentz, AM, Halpern, MT, Bowden, R. The impact of candidemia on length of hospital stay, outcome, and overall cost of illness. Clin Infect Dis 1998; 27:781788.
14.Guglaudsson, O, Gillespie, S, Lee, K, et al.Attributable mortality of candidemia, revisited. Clin Infect Dis 2003;37:11721177.
15.Chime. ChimeData Program. Wallingford, CT: Chime, Connecticut Hospital Association.
16.Health Services Cost Review Commission. Health Services Cost Review. Baltimore: Department of Health and Mental Hygiene of the State of Maryland.
17.Pappas, PG, Rex, JH, Sobel, JD, et al.Guidelines from the Infectious Diseases Society of America: guidelines for treatment of candidiasis. Clin Infect Dis 2004;38:161189.
18.Haddix, AC, Corso, PS, Gorsky, RD. Costs. In: Haddix, AC, Teutsch, SM, Corso, PS, eds. Prevention Effectiveness, ed. 2. New York: Oxford University Press; 2003:5376.
19.Meitzer, MI. Introduction to health economics for physicians. Lancet 2001;358:993998.
20. Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 1999 rates. 63 Federal Register 41099 (1998).
21. Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 2000 rates. 64 Federal Register 41620 (1999).
22.Bureau of Labor Statistics. Consumer Price Index. Washington, DC: Bureau of Labor Statistics, U.S. Bureau of Labor Statistics.
23.Goff, DASierawski, SJ, Fass, RJ. Cost analysis of Candida infection among surgical intensive care unit patients. Clinical Drug Investigation 1996;12:176180.
24.Wilson, LS, Reyes, CM, Stolpman, M, Speckman, J, Allen, K, Beney, J. The direct cost and incidence of systemic fungal infections. Value Health 2002;5:2634.
25.Torf, K. Economic aspects of treatment for fungal infections in cancer patients. Eur J Clin Microbiol Infect Dis 1997;16:98107.
26.Rosenthal, GE, Harper, DL, Quinn, LM, et al.Severity-adjusted mortality and length of stay in teaching and nonteaching hospitals: results of a regional study. JAMA 1997;278:485490.
27.Young, DS, Sachais, BS, Jefferies, LC. The cost of disease. Clin Chem 2000; 46:955966.
28.Diekema, DJ, Messer, SA, Brueggemann, AB, et al.Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol 2002;40:12981302.
29.Kao, AS, Brandt, ME, Pruitt, WR, et al.The epidemiology of candidemia in two United States cities: results of a population-based active surveillance. Clin Infect Dis 1999;29:11641170.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 425 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2018. This data will be updated every 24 hours.