Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-vbn2q Total loading time: 0.999 Render date: 2021-08-01T01:11:02.937Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Infection Prevention and Control Guideline for Cystic Fibrosis: 2013 Update

Published online by Cambridge University Press:  10 May 2016

Lisa Saiman
Affiliation:
Department of Pediatrics, Columbia University Medical Center, New York, New York; and Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, New York Co-chairs of the Infection Prevention and Control Guideline for Cystic Fibrosis Committee
Jane D. Siegel
Affiliation:
Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and Children’s Medical Center, Dallas, Texas Co-chairs of the Infection Prevention and Control Guideline for Cystic Fibrosis Committee
John J. LiPuma
Affiliation:
Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan; and Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan Co-chairs of the Infection Prevention and Control Guideline for Cystic Fibrosis Committee
Rebekah F. Brown
Affiliation:
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
Elizabeth A. Bryson
Affiliation:
Department of Pediatrics, Akron Children’s Hospital, Akron, Ohio
Mary Jo Chambers
Affiliation:
Department of Social Work, Arkansas Children’s Hospital, Little Rock, Arkansas
Veronica S. Downer
Affiliation:
University of Michigan Hospital, Ann Arbor, Michigan
Jill Fliege
Affiliation:
Pulmonary Division, Nebraska Medical Center, Omaha, Nebraska
Leslie A. Hazle
Affiliation:
Medical Department, Cystic Fibrosis Foundation, Bethesda, Maryland
Manu Jain
Affiliation:
Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
Bruce C. Marshall
Affiliation:
Medical Department, Cystic Fibrosis Foundation, Bethesda, Maryland
Catherine O’Malley
Affiliation:
Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
Suzanne R. Pattee
Affiliation:
Adult with cystic fibrosis, Silver Spring, Maryland
Gail Potter-Bynoe
Affiliation:
Department of Infection Prevention and Control, Boston Children’s Hospital, Boston, Massachusetts
Siobhan Reid
Affiliation:
Parent
Karen A. Robinson
Affiliation:
Johns Hopkins University, Baltimore, Maryland
Kathryn A. Sabadosa
Affiliation:
Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
H. Joel Schmidt
Affiliation:
Department of Pediatrics, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
Elizabeth Tullis
Affiliation:
Department of Medicine, University of Toronto, and Keenan Research Centre of Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
Jennifer Webber
Affiliation:
Parent
David J. Weber
Affiliation:
Departments of Medicine and Pediatrics, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina The list of authors represents the entire Infection Prevention and Control Guideline for Cystic Fibrosis Committee
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Extract

The 2013 Infection Prevention and Control (IP&C) Guideline for Cystic Fibrosis (CF) was commissioned by the CF Foundation as an update of the 2003 Infection Control Guideline for CF. During the past decade, new knowledge and new challenges provided the following rationale to develop updated IP&C strategies for this unique population:

1. The need to integrate relevant recommendations from evidence-based guidelines published since 2003 into IP&C practices for CF . These included guidelines from the Centers for Disease Control and Prevention (CDC)/Healthcare Infection Control Practices Advisory Committee (HICPAC), the World Health Organization (WHO), and key professional societies, including the Infectious Diseases Society of America (IDSA) and the Society for Healthcare Epidemiology of America (SHEA). During the past decade, new evidence has led to a renewed emphasis on source containment of potential pathogens and the role played by the contaminated healthcare environment in the transmission of infectious agents. Furthermore, an increased understanding of the importance of the application of implementation science, monitoring adherence, and feedback principles has been shown to increase the effectiveness of IP&C guideline recommendations.

2. Experience with emerging pathogens in the non-CF population has expanded our understanding of droplet transmission of respiratory pathogens and can inform IP&C strategies for CF . These pathogens include severe acute respiratory syndrome coronavirus and the 2009 influenza A H1N1. Lessons learned about preventing transmission of methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant gram-negative pathogens in non-CF patient populations also can inform IP&C strategies for CF.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
© Lisa Saiman, Jane D. Siegel, John J. LiPuma, Rebekah F. Brown, Elizabeth A. Bryson, Mary Jo Chambers, Veronica S. Downer, Jill Fliege, Leslie A. Hazle, Manu Jain, Bruce C. Marshall, Catherine O'Malley, Suzanne R. Pattee, Gail Potter-Bynoe, Siobhan Reid, Karen A. Robinson, Kathryn A. Sabadosa, H. Joel Schmidt, Elizabeth Tullis, Jennifer Webber and David J. Weber 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© 2014 by The Society for Healthcare Epidemiology of America and The Cystic Fibrosis Foundation.

References

1. Saiman, L, Siegel, J. Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient-to-patient transmission. Infect Control Hosp Epidemiol 2003;24:S6S52.CrossRefGoogle ScholarPubMed
2. Sehulster, L, Chinn, RY. Guidelines for environmental infection control in health-care facilities: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep 2003;52:142.Google Scholar
3. Tablan, OC, Anderson, LJ, Besser, R, Bridges, C, Hajjeh, R. Guidelines for preventing health-care–associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep 2004;53:136.Google ScholarPubMed
4. Jensen, PA, Lambert, LA, Iademarco, MF, Ridzon, R. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep 2005;54:1141.Google ScholarPubMed
5. Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control 2007;35:S165S193.CrossRefGoogle ScholarPubMed
6. Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L. 2007 Guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control 2007;35:S65S164.CrossRefGoogle ScholarPubMed
7. Rutala, WA, Weber, DJ; Healthcare Infection Control Practices Advisory Committee (HICPAC). Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008. http://www.cdc.gov/hicpac/pdf/guidelines/disinfection_nov_2008.pdf. Published 2008. Accessed January 2014.Google Scholar
8. Calfee, DP, Salgado, CD, Classen, D, et al. Strategies to prevent transmission of methicillin-resistant Staphylococcus aureus in acute care hospitals. Infect Control Hosp Epidemiol 2008;29(suppl 1):S62S80.CrossRefGoogle ScholarPubMed
9. World Health Organization. Guidelines on Hand Hygiene in Healthcare. http://whqlibdoc.who.int/publications/2009/9789241597906_eng.pdf. Published 2009. Accessed January 13, 2014.Google Scholar
10. Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention. Infection Prevention Checklist for Outpatient Settings: Minimum Expectations for Safe Care. http://www.cdc.gov/HAI/pdfs/guidelines/ambulatory-care-checklist-07-2011.pdf. Published 2011. Accessed January 2014.Google Scholar
11. Advisory Committee on Immunization Practices; Centers for Disease Control and Prevention. Immunization of health-care personnel: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2011;60:145.Google Scholar
12. Guzman-Cottrill, JA, Ravin, KA, Bryant, KA, Zerr, DM, Kociolek, L, Siegel, JD. Infection prevention and control in residential facilities for pediatric patients and their families. Infect Control Hosp Epidemiol 2013;34:10031041.CrossRefGoogle ScholarPubMed
13. Rubin, LG, Levin, MJ, Ljungman, P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014;58:309318.CrossRefGoogle ScholarPubMed
14. Centers for Disease Control and Prevention. Seasonal Influenza (Flu). http://www.cdc.gov/flu/. Published 2014. Accessed January 13, 2014.Google Scholar
15. Glatman-Freedman, A, Portelli, I, Jacobs, SK, et al. Attack rates assessment of the 2009 pandemic H1N1 influenza A in children and their contacts: a systematic review and meta-analysis. PLoS ONE 2012;7:e50228.CrossRefGoogle ScholarPubMed
16. Dantes, R, Mu, Y, Belflower, R, et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med 2013;173:19701978.Google ScholarPubMed
17. Iwamoto, M, Mu, Y, Lynfield, R, et al. Trends in invasive methicillin-resistant Staphylococcus aureus infections. Pediatrics 2013;132:e817e824.CrossRefGoogle ScholarPubMed
18. Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 2013;34:114.CrossRefGoogle ScholarPubMed
19. Savard, P, Perl, TM. A call for action: managing the emergence of multidrug-resistant Enterobacteriaceae in the acute care settings. Curr Opin Infect Dis 2012;25:371377.CrossRefGoogle Scholar
20. Coia, JE, Duckworth, GJ, Edwards, DI, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect 2006;63(suppl 1):S1S44.CrossRefGoogle Scholar
21. Cystic Fibrosis Foundation. National Patient Registry 2012 Annual Data Report. Bethesda, MD: Cystic Fibrosis Foundation, 2013.Google Scholar
22. Dasenbrook, EC, Merlo, CA, Diener-West, M, Lechtzin, N, Boyle, MP. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med 2008;178:814821.CrossRefGoogle ScholarPubMed
23. Dasenbrook, EC, Checkley, W, Merlo, CA, Konstan, MW, Lechtzin, N, Boyle, MP. Association between respiratory tract methicillin-resistant Staphylococcus aureus and survival in cystic fibrosis. JAMA 2010;303:23862392.CrossRefGoogle ScholarPubMed
24. Leung, JM, Olivier, KN. Nontuberculous mycobacteria in patients with cystic fibrosis. Semin Respir Crit Care Med 2013;34:124134.Google ScholarPubMed
25. Kalish, LA, Waltz, DA, Dovey, M, et al. Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. Am J Respir Crit Care Med 2006;173:421425.CrossRefGoogle ScholarPubMed
26. Lipuma, JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010;23:299323.CrossRefGoogle ScholarPubMed
27. Fothergill, JL, Walshaw, MJ, Winstanley, C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J 2012;40:227238.CrossRefGoogle ScholarPubMed
28. Aaron, SD, Vandemheen, KL, Ramotar, K, et al. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 2010;304:21452153.CrossRefGoogle ScholarPubMed
29. Waters, V, Zlosnik, JE, Yau, YC, Speert, DP, Aaron, SD, Guttman, DS. Comparison of three typing methods for Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2012;31:33413350.CrossRefGoogle ScholarPubMed
30. Luna, RA, Millecker, LA, Webb, CR, et al. Molecular epidemiological surveillance of multidrug-resistant Pseudomonas aeruginosa isolates in a pediatric population of patients with cystic fibrosis and determination of risk factors for infection with the Houston-1 strain. J Clin Microbiol 2013;51:12371240.CrossRefGoogle Scholar
31. Elborn, JS. Fixing cystic fibrosis CFTR with correctors and potentiators: off to a good start. Thorax 2012;67:45.CrossRefGoogle ScholarPubMed
32. Robinson, KA, Saldanha, IJ, McKoy, NA. Development of a framework to identify research gaps from systematic reviews. J Clin Epidemiol 2011;64:13251330.CrossRefGoogle ScholarPubMed
33. Petitti, DB, Teutsch, SM, Barton, MB, Sawaya, GF, Ockene, JK, DeWitt, T. Update on the methods of the U.S. Preventive Services Task Force: insufficient evidence. Ann Intern Med 2009;150:199205.CrossRefGoogle ScholarPubMed
34. Sawaya, GF, Guirguis-Blake, J, LeFevre, M, Harris, R, Petitti, D. Update on the methods of the U.S. Preventive Services Task Force: estimating certainty and magnitude of net benefit. Ann Intern Med 2007;147:871875.CrossRefGoogle ScholarPubMed
35. Guyatt, GH, Oxman, AD, Vist, GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924926.CrossRefGoogle ScholarPubMed
36. Ahmed, F, Temte, JL, Campos-Outcalt, D, Schunemann, HJ. Methods for developing evidence-based recommendations by the Advisory Committee on Immunization Practices (ACIP) of the U.S. Centers for Disease Control and Prevention (CDC). Vaccine 2011;29:91719176.CrossRefGoogle Scholar
37. Umscheid, CA, Agarwal, RK, Brennan, PJ. Updating the guideline development methodology of the Healthcare Infection Control Practices Advisory Committee (HICPAC). Am J Infect Control 2010;38:264273.CrossRefGoogle Scholar
38. Griffin, MR. Influenza vaccination of healthcare workers: making the grade for action. Clin Infect Dis 2014;58:5860.CrossRefGoogle Scholar
39. Miller, MB, Gilligan, PH. Laboratory aspects of management of chronic pulmonary infections in patients with cystic fibrosis. J Clin Microbiol 2003;41:40094015.CrossRefGoogle ScholarPubMed
40. UK Cystic Fibrosis Trust. Laboratory Standards for Processing Microbiological Samples from People with Cystic Fibrosis. https://www.cysticfibrosis.org.uk/media/82034/cd-laboratory-standards-sept10.pdf. Published 2010. Accessed January 13, 2014.Google Scholar
41. Zhou, J, Garber, E, Desai, M, Saiman, L. Compliance of clinical microbiology laboratories in the United States with current recommendations for processing respiratory tract specimens from patients with cystic fibrosis. J Clin Microbiol 2006;44:15471549.CrossRefGoogle ScholarPubMed
42. Rosenfeld, M, Emerson, J, Accurso, F, et al. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol 1999;28:321328.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
43. Al-Saleh, S, Dell, SD, Grasemann, H, et al. Sputum induction in routine clinical care of children with cystic fibrosis. J Pediatr 2010;157:1006.e1–1011.e1.CrossRefGoogle ScholarPubMed
44. Razvi, S, Quittell, L, Sewall, A, Quinton, H, Marshall, B, Saiman, L. Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005. Chest 2009;136:15541560.CrossRefGoogle ScholarPubMed
45. Davidson, AG, Chilvers, MA, Lillquist, YP. Effects of a Pseudomonas aeruginosa eradication policy in a cystic fibrosis clinic. Curr Opin Pulm Med 2012;18:615621.CrossRefGoogle Scholar
46. Alby, K, Gilligan, PH, Miller, MB. Comparison of matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry platforms for the identification of gram-negative rods from patients with cystic fibrosis. J Clin Microbiol 2013;51:38523854.CrossRefGoogle ScholarPubMed
47. Desai, AP, Stanley, T, Atuan, M, et al. Use of matrix assisted laser desorption ionisation–time of flight mass spectrometry in a paediatric clinical laboratory for identification of bacteria commonly isolated from cystic fibrosis patients. J Clin Pathol 2012;65:835838.CrossRefGoogle Scholar
48. Fernandez-Olmos, A, Garcia-Castillo, M, Morosini, MI, Lamas, A, Maiz, L, Canton, R. MALDI-TOF MS improves routine identification of non-fermenting gram negative isolates from cystic fibrosis patients. J Cyst Fibros 2012;11:5962.CrossRefGoogle ScholarPubMed
49. Hurley, MN, Ariff, AH, Bertenshaw, C, Bhatt, J, Smyth, AR. Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. J Cyst Fibros 2012;11:288292.CrossRefGoogle Scholar
50. Macdonald, D, Cuthbertson, L, Doherty, C, et al. Early Pseudomonas aeruginosa infection in individuals with cystic fibrosis: is susceptibility testing justified? J Antimicrob Chemother 2010;65:23732375.CrossRefGoogle ScholarPubMed
51. Cheng, K, Smyth, RL, Govan, JR, et al. Spread of β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996;348:639642.CrossRefGoogle Scholar
52. Denton, M, Kerr, K, Mooney, L, et al. Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 2002;34:257261.CrossRefGoogle ScholarPubMed
53. Jones, AM, Govan, JR, Doherty, CJ, et al. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet 2001;358:557558.CrossRefGoogle Scholar
54. Lynch, SV, Bruce, KD. The cystic fibrosis airway microbiome. Cold Spring Harb Perspect Med 2013;3:a009738.CrossRefGoogle ScholarPubMed
55. Rabin, HR, Surette, MG. The cystic fibrosis airway microbiome. Curr Opin Pulm Med 2012;18:622627.CrossRefGoogle ScholarPubMed
56. Zemanick, ET, Sagel, SD, Harris, JK. The airway microbiome in cystic fibrosis and implications for treatment. Curr Opin Pediatr 2011;23:319324.CrossRefGoogle ScholarPubMed
57. Zhao, J, Schloss, PD, Kalikin, LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 2012;109:58095814.CrossRefGoogle ScholarPubMed
58. Lipuma, JJ. Molecular tools for epidemiologic study of infectious diseases. Pediatr Infect Dis J 1998;17:667675.CrossRefGoogle Scholar
59. Morel, AS, Saiman, L. The role of molecular epidemiologic typing in pediatric infection control. Semin Pediatr Infect Dis 2001;12:100106.CrossRefGoogle Scholar
60. Tenover, FC, Arbeit, RD, Goering, RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:22332239.Google ScholarPubMed
61. Mahenthiralingam, E, Campbell, ME, Foster, J, Lam, JS, Speert, DP. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 1996;34:11291135.Google ScholarPubMed
62. van Belkum, A, Sluijuter, M, de Groot, R, Verbrugh, H, Hermans, PW. Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. J Clin Microbiol 1996;34:11761179.Google ScholarPubMed
63. Urwin, R, Maiden, MC. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 2003;11:479487.CrossRefGoogle Scholar
64. Multi Locus Sequence Typing website. http://www.mlst.net. Published 2014. Accessed January 14, 2014.Google Scholar
65. Snitkin, ES, Zelazny, AM, Thomas, PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012;4:148ra116.CrossRefGoogle ScholarPubMed
66. Bryant, JM, Grogono, DM, Greaves, D, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013;381:15511560.CrossRefGoogle ScholarPubMed
67. International Burkholderia cepacia Working Group website. http://users.ugent.be/∼tcoenye/index_bestanden/index.htm. Published 2010. Accessed January 13, 2014.Google Scholar
68. Cystic Fibrosis Foundation. National Patient Registry 2012 Annual Data Report to the Center Directors. Bethesda, MD: Cystic Fibrosis Foundation, 2013.Google Scholar
69. Burkholder, W. Sour skin: a bacterial rot of onion bulbs. Phytopathology 1950;40:115117.Google Scholar
70. Coenye, T, Mahenthiralingam, E, Henry, D, et al. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis–related isolates. Int J Syst Evol Microbiol 2001;51:14811490.CrossRefGoogle ScholarPubMed
71. Vandamme, P, Henry, D, Coenye, T, et al. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 2002;33:143149.CrossRefGoogle ScholarPubMed
72. Vanlaere, E, Baldwin, A, Gevers, D, et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 2009;59:102111.CrossRefGoogle ScholarPubMed
73. Vandamme, P, Holmes, B, Coenye, T, et al. Burkholderia cenocepacia sp. nov.—a new twist to an old story. Res Microbiol 2003;154:9196.CrossRefGoogle Scholar
74. Vandamme, P, Holmes, B, Vancanneyt, M, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 1997;47:11881200.CrossRefGoogle ScholarPubMed
75. Vandamme, P, Mahenthiralingam, E, Holmes, B, et al. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 2000;38:10421047.Google Scholar
76. Vanlaere, E, Lipuma, JJ, Baldwin, A, et al. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 2008;58:15801590.CrossRefGoogle ScholarPubMed
77. Yabuuchi, E, Kawamura, Y, Ezaki, T, et al. Burkholderia uboniae sp. nov., L-arabinose-assimilating but different from Burkholderia thailandensis and Burkholderia vietnamiensis . Microbiol Immunol 2000;44:307317.CrossRefGoogle ScholarPubMed
78. Peeters, C, Zlosnik, JE, Spilker, T, Hird, TJ, Lipuma, JJ, Vandamme, P. Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 2013;36:483489.CrossRefGoogle Scholar
79. Vermis, K, Coenye, T, LiPuma, JJ, Mahenthiralingam, E, Nelis, HJ, Vandamme, P. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int J Syst Evol Microbiol 2004;54:689691.CrossRefGoogle Scholar
80. Gillis, M, Tran Van, V, Bardin, R, et al. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 1995;45:274.CrossRefGoogle Scholar
81. Lipuma, JJ. Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 2005;11:528533.CrossRefGoogle ScholarPubMed
82. Whitby, PW, Pope, LC, Carter, KB, LiPuma, JJ, Stull, TL. Species-specific PCR as a tool for the identification of Burkholderia gladioli . J Clin Microbiol 2000;38:282285.Google ScholarPubMed
83. Ciofu, O, Hansen, CR, Hoiby, N. Respiratory bacterial infections in cystic fibrosis. Curr Opin Pulm Med 2013;19:251258.CrossRefGoogle Scholar
84. Prunier, AL, Malbruny, B, Laurans, M, Brouard, J, Duhamel, JF, Leclercq, R. High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 2003;187:17091716.CrossRefGoogle ScholarPubMed
85. Besier, S, Zander, J, Kahl, BC, Kraiczy, P, Brade, V, Wichelhaus, TA. The thymidine-dependent small-colony-variant phenotype is associated with hypermutability and antibiotic resistance in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 2008;52:21832189.CrossRefGoogle ScholarPubMed
86. Proctor, RA, von Eiff, C, Kahl, BC, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 2006;4:295305.CrossRefGoogle Scholar
87. Proctor, RA, Kahl, B, von Eiff, C, Vaudaux, PE, Lew, DP, Peters, G. Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin Infect Dis 1998;27(suppl 1):S68S74.CrossRefGoogle Scholar
88. Sadowska, B, Bonar, A, von Eiff, C, et al. Characteristics of Staphylococcus aureus, isolated from airways of cystic fibrosis patients, and their small colony variants. FEMS Immunol Med Microbiol 2002;32:191197.CrossRefGoogle ScholarPubMed
89. Mitchell, G, Grondin, G, Bilodeau, G, Cantin, AM, Malouin, F. Infection of polarized airway epithelial cells by normal and small-colony variant strains of Staphylococcus aureus is increased in cells with abnormal cystic fibrosis transmembrane conductance regulator function and is influenced by NF-κB. Infect Immun 2011;79:35413551.CrossRefGoogle ScholarPubMed
90. Proctor, RA, van Langevelde, P, Kristjansson, M, Maslow, JN, Arbeit, RD. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus . Clin Infect Dis 1995;20:95102.CrossRefGoogle ScholarPubMed
91. Kahl, BC, Duebbers, A, Lubritz, G, et al. Population dynamics of persistent Staphylococcus aureus isolated from the airways of cystic fibrosis patients during a 6-year prospective study. J Clin Microbiol 2003;41:44244427.CrossRefGoogle ScholarPubMed
92. Besier, S, Smaczny, C, von Mallinckrodt, C, et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 2007;45:168172.CrossRefGoogle Scholar
93. Schneider, M, Muhlemann, K, Droz, S, Couzinet, S, Casaulta, C, Zimmerli, S. Clinical characteristics associated with isolation of small-colony variants of Staphylococcus aureus and Pseudomonas aeruginosa from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 2008;46:18321834.CrossRefGoogle Scholar
94. Hoffman, LR, Deziel, E, D’Argenio, DA, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa . Proc Natl Acad Sci USA 2006;103:19890–19895.CrossRefGoogle ScholarPubMed
95. Wolter, DJ, Emerson, JC, McNamara, S, et al. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 2013;57:384391.CrossRefGoogle ScholarPubMed
96. Kirisits, MJ, Prost, L, Starkey, M, Parsek, MR. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2005;71:48094821.CrossRefGoogle ScholarPubMed
97. Anderson, SW, Stapp, JR, Burns, JL, Qin, X. Characterization of small-colony-variant Stenotrophomonas maltophilia isolated from the sputum specimens of five patients with cystic fibrosis. J Clin Microbiol 2007;45:529535.CrossRefGoogle ScholarPubMed
98. Haussler, S, Lehmann, C, Breselge, C, et al. Fatal outcome of lung transplantation in cystic fibrosis patients due to small-colony variants of the Burkholderia cepacia complex. Eur J Clin Microbiol Infect Dis 2003;22:249253.Google ScholarPubMed
99. Kasperbauer, SH, Daley, CL. Diagnosis and treatment of infections due to Mycobacterium avium complex. Semin Respir Crit Care Med 2008;29:569576.CrossRefGoogle ScholarPubMed
100. Adekambi, T, Berger, P, Raoult, D, Drancourt, M. rpoB gene sequence–based characterization of emerging nontuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 2006;56:133143.CrossRefGoogle Scholar
101. Adekambi, T, Reynaud-Gaubert, M, Greub, G, et al. Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol 2004;42:54935501.CrossRefGoogle ScholarPubMed
102. Olivier, KN, Weber, DJ, Wallace, RJ Jr, et al. Nontuberculous mycobacteria. I. Multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 2003;167:828834.CrossRefGoogle Scholar
103. Levy, I, Grisaru-Soen, G, Lerner-Geva, L, et al. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis 2008;14:378384.CrossRefGoogle ScholarPubMed
104. Roux, AL, Catherinot, E, Ripoll, F, et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J Clin Microbiol 2009;47:41244128.CrossRefGoogle ScholarPubMed
105. Pihet, M, Carrere, J, Cimon, B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis—a review. Med Mycol 2009;47:387397.CrossRefGoogle ScholarPubMed
106. Bains, SN, Judson, MA. Allergic bronchopulmonary aspergillosis. Clin Chest Med 2012;33:265281.CrossRefGoogle ScholarPubMed
107. Knutsen, AP, Slavin, RG. Allergic bronchopulmonary aspergillosis in asthma and cystic fibrosis. Clin Dev Immunol 2011;2011:843763.CrossRefGoogle ScholarPubMed
108. Kousha, M, Tadi, R, Soubani, AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev 2011;20:156174.CrossRefGoogle ScholarPubMed
109. Moss, RB. Allergic bronchopulmonary aspergillosis and Aspergillus infection in cystic fibrosis. Curr Opin Pulm Med 2010;16:598603.CrossRefGoogle ScholarPubMed
110. Liu, JC, Modha, DE, Gaillard, EA. What is the clinical significance of filamentous fungi positive sputum cultures in patients with cystic fibrosis? J Cyst Fibros 2013;12:187193.CrossRefGoogle Scholar
111. Braun, AT, Merlo, CA. Cystic fibrosis lung transplantation. Curr Opin Pulm Med 2011;17:467472.Google ScholarPubMed
112. Hota, B. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis 2004;39:11821189.Google ScholarPubMed
113. Dowell, SF, Simmerman, JM, Erdman, DD, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis 2004;39:652657.CrossRefGoogle ScholarPubMed
114. Bischoff, WE, Swett, K, Leng, I, Peters, TR. Exposure to influenza virus aerosols during routine patient care. J Infect Dis 2013;207:10371046.CrossRefGoogle Scholar
115. Advisory Committee on Immunization Practices. Prevention and control of influenza with vaccines: interim recommendations of the Advisory Committee on Immunization Practices (ACIP), 2013. MMWR Morb Mortal Wkly Rep 2013;62:356.Google Scholar
116. Tran, K, Cimon, K, Severn, M, Pessoa-Silva, CL, Conly, J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS ONE 2012;7:e35797.CrossRefGoogle ScholarPubMed
117. Roy, CJ, Milton, DK. Airborne transmission of communicable infection—the elusive pathway. N Engl J Med 2004;350:17101712.CrossRefGoogle Scholar
118. Wong, TW, Lee, CK, Tam, W, et al. Cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg Infect Dis 2004;10:269276.CrossRefGoogle Scholar
119. Clifton, IJ, Fletcher, LA, Beggs, CB, Denton, M, Conway, SP, Peckham, DG. An aerobiological model of aerosol survival of different strains of Pseudomonas aeruginosa isolated from people with cystic fibrosis. J Cyst Fibros 2010;9:6468.CrossRefGoogle ScholarPubMed
120. Festini, F, Taccetti, G, Galici, V, et al. A 1-m distance is not safe for children with cystic fibrosis at risk for cross-infection with Pseudomonas aeruginosa . Am J Infect Control 2010;38:244245.CrossRefGoogle Scholar
121. Wainwright, CE, France, MW, O’Rourke, P, et al. Cough-generated aerosols of Pseudomonas aeruginosa and other gram-negative bacteria from patients with cystic fibrosis. Thorax 2009;64:926931.CrossRefGoogle ScholarPubMed
122. Clifton, IJ, Peckham, DG. Defining routes of airborne transmission of Pseudomonas aeruginosa in people with cystic fibrosis. Expert Rev Respir Med 2010;4:519529.CrossRefGoogle ScholarPubMed
123. Spicknall, IH, Koopman, JS, Nicas, M, Pujol, JM, Li, S, Eisenberg, JN. Informing optimal environmental influenza interventions: how the host, agent, and environment alter dominant routes of transmission. PLoS Comput Biol 2010;6:e1000969.CrossRefGoogle Scholar
124. Brankston, G, Gitterman, L, Hirji, Z, Lemieux, C, Gardam, M. Transmission of influenza A in human beings. Lancet Infect Dis 2007;7:257265.CrossRefGoogle ScholarPubMed
125. Zuckerman, JB, Prato, BS, Clock, S, et al. Characterizing bacterial air contamination during CF outpatient visits. Pediatr Pulmonol 2012;47(suppl 35):326.Google Scholar
126. Ferroni, A, Werkhauser-Bertrand, A, Le Bourgeois, M, et al. Bacterial contamination in the environment of hospitalised children with cystic fibrosis. J Cyst Fibros 2008;7:477482.CrossRefGoogle ScholarPubMed
127. Panagea, S, Winstanley, C, Walshaw, MJ, Ledson, MJ, Hart, CA. Environmental contamination with an epidemic strain of Pseudomonas aeruginosa in a Liverpool cystic fibrosis centre, and study of its survival on dry surfaces. J Hosp Infect 2005;59:102107.CrossRefGoogle Scholar
128. Zuckerman, JB, Zuaro, DE, Prato, BS, et al. Bacterial contamination of cystic fibrosis clinics. J Cyst Fibros 2009;8:186192.CrossRefGoogle ScholarPubMed
129. Aitken, ML, Limaye, A, Pottinger, P, et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 2012;185:231232.CrossRefGoogle Scholar
130. Speert, DP, Campbell, ME, Henry, DA, et al. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am J Respir Crit Care Med 2002;166:988993.CrossRefGoogle ScholarPubMed
131. Jelsbak, L, Johansen, HK, Frost, AL, et al. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 2007;75:22142224.CrossRefGoogle ScholarPubMed
132. Spilker, T, LiPuma, JJ. Genotype analysis of Pseudomonas aeruginosa isolates from U.S. CF centers. Pediatr Pulmonol 2013;48(suppl 36):306.Google Scholar
133. Biddick, R, Spilker, T, Martin, A, LiPuma, JJ. Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol Lett 2003;228:5762.Google Scholar
134. LiPuma, JJ, Dasen, SE, Nielson, DW, Stern, RC, Stull, TL. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990;336:10941096.CrossRefGoogle ScholarPubMed
135. Govan, JR, Brown, PH, Maddison, J, et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993;342:1519.CrossRefGoogle ScholarPubMed
136. Schlichting, C, Branger, C, Fournier, JM, et al. Typing of Staphylococcus aureus by pulsed-field gel electrophoresis, zymotyping, capsular typing, and phage typing: resolution of clonal relationships. J Clin Microbiol 1993;31:227232.Google ScholarPubMed
137. Elizur, A, Orscheln, RC, Ferkol, TW, Dunne, WM Jr, Storch, GA, Cannon, CL. Transmission of Panton-Valentine leukocidin–positive Staphylococcus aureus between patients with cystic fibrosis. J Pediatr 2007;151:9092.CrossRefGoogle ScholarPubMed
138. Givney, R, Vickery, A, Holliday, A, Pegler, M, Benn, R. Methicillin-resistant Staphylococcus aureus in a cystic fibrosis unit. J Hosp Infect 1997;35:2736.CrossRefGoogle Scholar
139. Cocchi, P, Cariani, L, Favari, F, et al. Molecular epidemiology of meticillin-resistant Staphylococcus aureus in Italian cystic fibrosis patients: a national overview. J Cyst Fibros 2011;10:407411.CrossRefGoogle Scholar
140. Denton, M, Todd, NJ, Kerr, KG, Hawkey, PM, Littlewood, JM. Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. J Clin Microbiol 1998;36:19531958.Google ScholarPubMed
141. Marzuillo, C, De Giusti, M, Tufi, D, et al. Molecular characterization of Stenotrophomonas maltophilia isolates from cystic fibrosis patients and the hospital environment. Infect Control Hosp Epidemiol 2009;30:753758.CrossRefGoogle ScholarPubMed
142. McPhail, GL, VanDyke, R, Renchel, M, LiPuma, JJ, Joseph, PM. An update on clinical outcomes associated with a clonal strain of Achromobacter (Alcaligenes) xylosoxidans . Pediatr Pulmonol 2009;44(suppl 32):310.Google Scholar
143. Krzewinski, JW, Nguyen, CD, Foster, JM, Burns, JL. Use of random amplified polymorphic DNA PCR to examine epidemiology of Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosoxidans from patients with cystic fibrosis. J Clin Microbiol 2001;39:35973602.CrossRefGoogle ScholarPubMed
144. Van Daele, S, Verhelst, R, Claeys, G, et al. Shared genotypes of Achromobacter xylosoxidans strains isolated from patients at a cystic fibrosis rehabilitation center. J Clin Microbiol 2005;43:29983002.CrossRefGoogle Scholar
145. Harris, KA, Kenna, DT, Blauwendraat, C, et al. Molecular fingerprinting of Mycobacterium abscessus strains in a cohort of pediatric cystic fibrosis patients. J Clin Microbiol 2012;50:17581761.CrossRefGoogle Scholar
146. Baldwin, A, Mahenthiralingam, E, Thickett, KM, et al. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 2005;43:46654673.CrossRefGoogle ScholarPubMed
147. Coenye, T, LiPuma, JJ. Multilocus restriction typing: a novel tool for studying global epidemiology of Burkholderia cepacia complex infection in cystic fibrosis. J Infect Dis 2002;185:14541462.CrossRefGoogle ScholarPubMed
148. Dasen, SE, LiPuma, JJ, Kostman, JR, Stull, TL. Characterization of PCR-ribotyping for Burkholderia (Pseudomonas) cepacia . J Clin Microbiol 1994;32:24222424.Google ScholarPubMed
149. LiPuma, JJ, Mortensen, JE, Dasen, SE, et al. Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J Pediatr 1988;113:859862.CrossRefGoogle ScholarPubMed
150. Spilker, T, Baldwin, A, Bumford, A, Dowson, CG, Mahenthiralingam, E, LiPuma, JJ. Expanded multilocus sequence typing for Burkholderia species. J Clin Microbiol 2009;47:26072610.CrossRefGoogle ScholarPubMed
151. Pegues, DA, Carson, LA, Tablan, OC, et al; Summer Camp Study Group. Acquisition of Pseudomonas cepacia at summer camps for patients with cystic fibrosis. J Pediatr 1994;124:694702.CrossRefGoogle Scholar
152. Johnson, WM, Tyler, SD, Rozee, KR. Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 1994;32:924930.Google ScholarPubMed
153. Pitt, TL, Kaufmann, ME, Patel, PS, Benge, LC, Gaskin, S, Livermore, DM. Type characterisation and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland. J Med Microbiol 1996;44:203210.CrossRefGoogle ScholarPubMed
154. Chen, JS, Witzmann, KA, Spilker, T, Fink, RJ, LiPuma, JJ. Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J Pediatr 2001;139:643649.CrossRefGoogle ScholarPubMed
155. Coenye, T, LiPuma, JJ. Population structure analysis of Burkholderia cepacia genomovar III: varying degrees of genetic recombination characterize major clonal complexes. Microbiology 2003;149:7788.CrossRefGoogle ScholarPubMed
156. Kumar, A, Dietrich, S, Schneider, W, et al. Genetic relatedness of Burkholderia (Pseudomonas) cepacia isolates from five cystic fibrosis centers in Michigan. Respir Med 1997;91:485492.CrossRefGoogle ScholarPubMed
157. Springman, AC, Jacobs, JL, Somvanshi, VS, et al. Genetic diversity and multihost pathogenicity of clinical and environmental strains of Burkholderia cenocepacia . Appl Environ Microbiol 2009;75:52505260.CrossRefGoogle ScholarPubMed
158. Drevinek, P, Vosahlikova, S, Cinek, O, et al. Widespread clone of Burkholderia cenocepacia in cystic fibrosis patients in the Czech Republic. J Med Microbiol 2005;54:655659.CrossRefGoogle ScholarPubMed
159. Mahenthiralingam, E, Vandamme, P, Campbell, ME, et al. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans . Clin Infect Dis 2001;33:14691475.CrossRefGoogle ScholarPubMed
160. Speert, DP, Henry, D, Vandamme, P, Corey, M, Mahenthiralingam, E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 2002;8:181187.CrossRefGoogle ScholarPubMed
161. Campana, S, Taccetti, G, Ravenni, N, et al. Transmission of Burkholderia cepacia complex: evidence for new epidemic clones infecting cystic fibrosis patients in Italy. J Clin Microbiol 2005;43:51365142.CrossRefGoogle ScholarPubMed
162. Manno, G, Dalmastri, C, Tabacchioni, S, et al. Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian cystic fibrosis center. J Clin Microbiol 2004;42:14911497.CrossRefGoogle Scholar
163. Drevinek, P, Cinek, O, Melter, J, Langsadl, L, Navesnakova, Y, Vavrova, V. Genomovar distribution of the Burkholderia cepacia complex differs significantly between Czech and Slovak patients with cystic fibrosis. J Med Microbiol 2003;52:603604.CrossRefGoogle ScholarPubMed
164. Segonds, C, Heulin, T, Marty, N, Chabanon, G. Differentiation of Burkholderia species by PCR–restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 1999;37:22012208.Google ScholarPubMed
165. Whiteford, ML, Wilkinson, JD, McColl, JH, et al. Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax 1995;50:11941198.CrossRefGoogle ScholarPubMed
166. Govan, JR, Brown, AR, Jones, AM. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2007;2:153164.CrossRefGoogle ScholarPubMed
167. Mortensen, JE, Fisher, MC, LiPuma, JJ. Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect Control Hosp Epidemiol 1995;16:3032.CrossRefGoogle ScholarPubMed
168. Johansen, HK, Kovesi, TA, Koch, C, Corey, M, Hoiby, N, Levison, H. Pseudomonas aeruginosa and Burkholderia cepacia infection in cystic fibrosis patients treated in Toronto and Copenhagen. Pediatr Pulmonol 1998;26:8996.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
169. Corey, M, Farewell, V. Determinants of mortality from cystic fibrosis in Canada, 1970–1989. Am J Epidemiol 1996;143:10071017.CrossRefGoogle Scholar
170. Rosenfeld, M, Davis, R, FitzSimmons, S, Pepe, M, Ramsey, B. Gender gap in cystic fibrosis mortality. Am J Epidemiol 1997;145:794803.CrossRefGoogle ScholarPubMed
171. Murray, S, Charbeneau, J, Marshall, BC, LiPuma, JJ. Impact of Burkholderia infection on lung transplantation in cystic fibrosis. Am J Respir Crit Care Med 2008;178:363371.CrossRefGoogle ScholarPubMed
172. De Soyza, A, Morris, K, McDowell, A, et al. Prevalence and clonality of Burkholderia cepacia complex genomovars in UK patients with cystic fibrosis referred for lung transplantation. Thorax 2004;59:526528.CrossRefGoogle ScholarPubMed
173. Scott, FW, Pitt, TL. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 2004;53:609615.CrossRefGoogle ScholarPubMed
174. Romling, U, Fiedler, B, Bosshammer, J, et al. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis 1994;170:16161621.CrossRefGoogle ScholarPubMed
175. Tummler, B, Koopmann, U, Grothues, D, Weissbrodt, H, Steinkamp, G, von der Hardt, H. Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 1991;29:12651267.Google ScholarPubMed
176. Wolz, C, Kiosz, G, Ogle, JW, et al. Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis: use of a DNA probe. Epidemiol Infect 1989;102:205214.CrossRefGoogle Scholar
177. Grothues, D, Koopmann, U, von der Hardt, H, Tummler, B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988;26:19731977.Google ScholarPubMed
178. Pedersen, SS, Koch, C, Hoiby, N, Rosendal, K. An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. J Antimicrob Chemother 1986;17:505516.CrossRefGoogle Scholar
179. O’Carroll, MR, Syrmis, MW, Wainwright, CE, et al. Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur Respir J 2004;24:101106.CrossRefGoogle ScholarPubMed
180. Armstrong, D, Bell, S, Robinson, M, et al. Evidence for spread of a clonal strain of Pseudomonas aeruginosa among cystic fibrosis clinics. J Clin Microbiol 2003;41:22662267.CrossRefGoogle ScholarPubMed
181. Armstrong, DS, Nixon, GM, Carzino, R, et al. Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. Am J Respir Crit Care Med 2002;166:983987.CrossRefGoogle Scholar
182. Syrmis, MW, O’Carroll, MR, Sloots, TP, et al. Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol 2004;53:10891096.CrossRefGoogle ScholarPubMed
183. Bradbury, R, Champion, A, Reid, DW. Poor clinical outcomes associated with a multi-drug resistant clonal strain of Pseudomonas aeruginosa in the Tasmanian cystic fibrosis population. Respirology 2008;13:886892.CrossRefGoogle Scholar
184. van Mansfeld, R, Willems, R, Brimicombe, R, et al. Pseudomonas aeruginosa genotype prevalence in Dutch cystic fibrosis patients and age dependency of colonization by various P. aeruginosa sequence types. J Clin Microbiol 2009;47:40964101.CrossRefGoogle Scholar
185. Griffiths, AL, Jamsen, K, Carlin, JB, et al. Effects of segregation on an epidemic Pseudomonas aeruginosa strain in a cystic fibrosis clinic. Am J Respir Crit Care Med 2005;171:10201025.CrossRefGoogle Scholar
186. Ashish, A, Shaw, M, Winstanley, C, Ledson, MJ, Walshaw, MJ. Increasing resistance of the Liverpool epidemic strain (LES) of Pseudomonas aeruginosa (Psa) to antibiotics in cystic fibrosis (CF)—a cause for concern? J Cyst Fibros 2012;11:173179.CrossRefGoogle Scholar
187. Al-Aloul, M, Crawley, J, Winstanley, C, Hart, CA, Ledson, MJ, Walshaw, MJ. Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax 2004;59:334336.CrossRefGoogle ScholarPubMed
188. Jones, AM, Dodd, ME, Doherty, CJ, Govan, JR, Webb, AK. Increased treatment requirements of patients with cystic fibrosis who harbour a highly transmissible strain of Pseudomonas aeruginosa . Thorax 2002;57:924925.CrossRefGoogle Scholar
189. Ashish, A, Shaw, M, McShane, J, Ledson, MJ, Walshaw, MJ. Health-related quality of life in cystic fibrosis patients infected with transmissible Pseudomonas aeruginosa strains: cohort study. JRSM Short Rep 2012;3:12.CrossRefGoogle Scholar
190. Spilker, T, Vandamme, P, Lipuma, JJ. Identification and distribution of Achromobacter species in cystic fibrosis. J Cyst Fibros 2013;12:298301.CrossRefGoogle Scholar
191. Vu-Thien, H, Darbord, JC, Moissenet, D, et al. Investigation of an outbreak of wound infections due to Alcaligenes xylosoxidans transmitted by chlorhexidine in a burns unit. Eur J Clin Microbiol Infect Dis 1998;17:724726.Google Scholar
192. Weitkamp, JH, Tang, YW, Haas, DW, Midha, NK, Crowe, JE Jr. Recurrent Achromobacter xylosoxidans bacteremia associated with persistent lymph node infection in a patient with hyper-immunoglobulin M syndrome. Clin Infect Dis 2000;31:11831187.CrossRefGoogle Scholar
193. Duggan, JM, Goldstein, SJ, Chenoweth, CE, Kauffman, CA, Bradley, SF. Achromobacter xylosoxidans bacteremia: report of four cases and review of the literature. Clin Infect Dis 1996;23:569576.CrossRefGoogle ScholarPubMed
194. Dunne, WM Jr, Maisch, S. Epidemiological investigation of infections due to Alcaligenes species in children and patients with cystic fibrosis: use of repetitive-element-sequence polymerase chain reaction. Clin Infect Dis 1995;20:836841.CrossRefGoogle Scholar
195. Vu-Thien, H, Moissenet, D, Valcin, M, Dulot, C, Tournier, G, Garbarg-Chenon, A. Molecular epidemiology of Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans in a cystic fibrosis center. Eur J Clin Microbiol Infect Dis 1996;15:876879.CrossRefGoogle Scholar
196. Kanellopoulou, M, Pournaras, S, Iglezos, H, Skarmoutsou, N, Papafrangas, E, Maniatis, AN. Persistent colonization of nine cystic fibrosis patients with an Achromobacter (Alcaligenes) xylosoxidans clone. Eur J Clin Microbiol Infect Dis 2004;23:336339.CrossRefGoogle Scholar
197. Coenye, T, Spilker, T, Reik, R, Vandamme, P, Lipuma, JJ. Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J Clin Microbiol 2005;43:34633466.CrossRefGoogle ScholarPubMed
198. Coenye, T, Vandamme, P, LiPuma, JJ. Infection by Ralstonia species in cystic fibrosis patients: identification of R. pickettii and R. mannitolilytica by polymerase chain reaction. Emerg Infect Dis 2002;8:692696.CrossRefGoogle Scholar
199. Vandamme, P, Coenye, T. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 2004;54:22852289.CrossRefGoogle ScholarPubMed
200. Vandamme, P, Goris, J, Coenye, T, et al. Assignment of Centers for Disease Control group IVc-2 to the genus Ralstonia as Ralstonia paucula sp. nov. Int J Syst Bacteriol 1999;49(pt 2):663669.CrossRefGoogle ScholarPubMed
201. Coenye, T, Falsen, E, Vancanneyt, M, et al. Classification of Alcaligenes faecalis–like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 1999;49(pt 2):405413.CrossRefGoogle Scholar
202. Coenye, T, Vandamme, P, LiPuma, JJ. Ralstonia respiraculi sp. nov., isolated from the respiratory tract of cystic fibrosis patients. Int J Syst Evol Microbiol 2003;53:13391342.CrossRefGoogle ScholarPubMed
203. Chen, WM, Laevens, S, Lee, TM, et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001;51:17291735.CrossRefGoogle Scholar
204. LiPuma, JJ. Burkholderia and emerging pathogens in cystic fibrosis. Semin Respir Crit Care Med 2003;24:681692.Google Scholar
205. Coenye, T, Falsen, E, Hoste, B, et al. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 2000;50(pt 2):887899.CrossRefGoogle ScholarPubMed
206. Jorgensen, IM, Johansen, HK, Frederiksen, B, et al. Epidemic spread of Pandoraea apista, a new pathogen causing severe lung disease in cystic fibrosis patients. Pediatr Pulmonol 2003;36:439446.Google Scholar
207. Gorwitz, RJ, Kruszon-Moran, D, McAllister, SK, et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 2008;197:12261234.CrossRefGoogle ScholarPubMed
208. Rosenfeld, M, Bernardo-Ocampo, C, Emerson, J, Genatossio, A, Burns, J, Gibson, R. Prevalence of cystic fibrosis pathogens in the oropharynx of healthy children and implications for cystic fibrosis care. J Cyst Fibros 2012;11:456457.CrossRefGoogle ScholarPubMed
209. Goerke, C, Kraning, K, Stern, M, Doring, G, Botzenhart, K, Wolz, C. Molecular epidemiology of community-acquired Staphylococcus aureus in families with and without cystic fibrosis patients. J Infect Dis 2000;181:984989.CrossRefGoogle Scholar
210. Perl, TM, Cullen, JJ, Wenzel, RP, et al. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med 2002;346:18711877.CrossRefGoogle ScholarPubMed
211. Perl, TM, Roy, MC. Postoperative wound infections: risk factors and role of Staphylococcus aureus nasal carriage. J Chemother 1995;7(suppl 3):2935.Google ScholarPubMed
212. von Eiff, C, Becker, K, Machka, K, Stammer, H, Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 2001;344:1116.CrossRefGoogle Scholar
213. Branger, C, Gardye, C, Lambert-Zechovsky, N. Persistence of Staphylococcus aureus strains among cystic fibrosis patients over extended periods of time. J Med Microbiol 1996;45:294301.CrossRefGoogle Scholar
214. Wertheim, HF, Vos, MC, Ott, A, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 2004;364:703705.CrossRefGoogle ScholarPubMed
215. Stone, A, Quittell, L, Zhou, J, et al. Staphylococcus aureus nasal colonization among pediatric cystic fibrosis patients and their household contacts. Pediatr Infect Dis J 2009;28:895899.CrossRefGoogle ScholarPubMed
216. Ridder-Schaphorn, S, Ratjen, F, Dubbers, A, et al. Nasal Staphylococcus aureus carriage is not a risk factor for lower-airway infection in young cystic fibrosis patients. J Clin Microbiol 2007;45:29792984.CrossRefGoogle Scholar
217. Nadesalingam, K, Conway, SP, Denton, M. Risk factors for acquisition of methicillin-resistant Staphylococcus aureus (MRSA) by patients with cystic fibrosis. J Cyst Fibros 2005;4:4952.CrossRefGoogle ScholarPubMed
218. Glikman, D, Siegel, JD, David, MZ, et al. Complex molecular epidemiology of methicillin-resistant Staphylococcus aureus isolates from children with cystic fibrosis in the era of epidemic community-associated methicillin-resistant S aureus . Chest 2008;133:13811387.CrossRefGoogle ScholarPubMed
219. Muhlebach, MS, Miller, M, LaVange, LM, Mayhew, G, Goodrich, JS, Miller, MB. Treatment intensity and characteristics of MRSA infection in CF. J Cyst Fibros 2011;10:201206.CrossRefGoogle ScholarPubMed
220. Champion, EA, Miller, MB, Popowitch, EB, Hobbs, MM, Saiman, L, Muhlebach, MS. Antimicrobial susceptibility and molecular typing of MRSA in cystic fibrosis. Pediatr Pulmonol 2014;49:230237.CrossRefGoogle ScholarPubMed
221. Al-Zubeidi, D, Hogan, PG, Boyle, M, Burnham, CA, Fritz, SA. Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolated in serial cultures from the respiratory tract of children with cystic fibrosis. Pediatr Infect Dis J 2014;33:549553.CrossRefGoogle ScholarPubMed
222. Harris, SR, Cartwright, EJ, Torok, ME, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 2013;13:130136.CrossRefGoogle ScholarPubMed
223. Koser, CU, Holden, MT, Ellington, MJ, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 2012;366:22672275.CrossRefGoogle ScholarPubMed
224. Vanderhelst, E, De Meirleir, L, Verbanck, S, Pierard, D, Vincken, W, Malfroot, A. Prevalence and impact on FEV1 decline of chronic methicillin-resistant Staphylococcus aureus (MRSA) colonization in patients with cystic fibrosis: a single-center, case control study of 165 patients. J Cyst Fibros 2012;11:27.CrossRefGoogle Scholar
225. Sanders, DB, Bittner, RC, Rosenfeld, M, Redding, GJ, Goss, CH. Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis. Pediatr Pulmonol 2011;46:393400.CrossRefGoogle ScholarPubMed
226. Sawicki, GS, Rasouliyan, L, Pasta, DJ, et al. The impact of incident methicillin resistant Staphylococcus aureus detection on pulmonary function in cystic fibrosis. Pediatr Pulmonol 2008;43:11171123.CrossRefGoogle Scholar
227. Bange, FC, Brown, BA, Smaczny, C, Wallace, RJ Jr, Bottger, EC. Lack of transmission of Mycobacterium abscessus among patients with cystic fibrosis attending a single clinic. Clin Infect Dis 2001;32:16481650.CrossRefGoogle ScholarPubMed
228. Jonsson, BE, Gilljam, M, Lindblad, A, Ridell, M, Wold, AE, Welinder-Olsson, C. Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. J Clin Microbiol 2007;45:14971504.Google Scholar
229. Tettelin, H, Davidson, RM, Agrawal, S, et al. High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis 2014;20:364371.CrossRefGoogle ScholarPubMed
230. Gross, J, Doan, M, Yamada, S, et al. Mycobacterium abcessus epidemic among cystic fibrosis patients [abstract]. Pediatr Pulmonol 2013;48(suppl 36):302.Google Scholar
231. Chalermskulrat, W, Sood, N, Neuringer, IP, et al. Nontuberculous mycobacteria in end stage cystic fibrosis: implications for lung transplantation. Thorax 2006;61:507513.CrossRefGoogle ScholarPubMed
232. Orens, JB, Estenne, M, Arcasoy, S, et al. International guidelines for the selection of lung transplant candidates: 2006 update—a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2006;25:745755.CrossRefGoogle Scholar
233. Huang, HC, Weigt, SS, Derhovanessian, A, et al. Nontuberculous mycobacterium infection after lung transplantation is associated with increased mortality. J Heart Lung Transplant 2011;30:790798.CrossRefGoogle Scholar
234. Esther, CR Jr, Esserman, DA, Gilligan, P, Kerr, A, Noone, PG. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros 2010;9:117123.CrossRefGoogle ScholarPubMed
235. Barbier, F, Andremont, A, Wolff, M, Bouadma, L. Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opin Pulm Med 2013;19:216228.CrossRefGoogle Scholar
236. Branski, LK, Al-Mousawi, A, Rivero, H, Jeschke, MG, Sanford, AP, Herndon, DN. Emerging infections in burns. Surg Infect (Larchmt) 2009;10:389397.CrossRefGoogle Scholar
237. Pendleton, JN, Gorman, SP, Gilmore, BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013;11:297308.CrossRefGoogle Scholar
238. McCallum, SJ, Gallagher, MJ, Corkill, JE, Hart, CA, Ledson, MJ, Walshaw, MJ. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax 2002;57:559560.CrossRefGoogle Scholar
239. Dy, ME, Nord, JA, LaBombardi, VJ, Germana, J, Walker, P. Lack of throat colonization with Burkholderia cepacia among cystic fibrosis healthcare workers. Infect Control Hosp Epidemiol 1999;20:90.CrossRefGoogle ScholarPubMed
240. Agochukwu, NQ, Rastinehad, AR, Richter, LA, et al. Prostatic abscess in a pediatric patient with chronic granulomatous disease: report of a unique case and review of the literature. J Pediatr Surg 2012;47:400403.CrossRefGoogle Scholar
241. Fishman, JA. Infections in immunocompromised hosts and organ transplant recipients: essentials. Liver Transpl 2011;17(suppl 3):S34S37.CrossRefGoogle ScholarPubMed
242. Holmes, A, Nolan, R, Taylor, R, et al. An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis. J Infect Dis 1999;179:11971205.CrossRefGoogle ScholarPubMed
243. Lowy, FD. Staphylococcus aureus infections. N Engl J Med 1998;339:520532.CrossRefGoogle ScholarPubMed
244. Chambers, HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 2001;7:178182.CrossRefGoogle ScholarPubMed
245. Creech, CB 2nd, Kernodle, DS, Alsentzer, A, Wilson, C, Edwards, KM. Increasing rates of nasal carriage of methicillin-resistant Staphylococcus aureus in healthy children. Pediatr Infect Dis J 2005;24:617621.CrossRefGoogle Scholar
246. Kluytmans, J, van Belkum, A, Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997;10:505520.Google ScholarPubMed
247. Lautenbach, E, Tolomeo, P, Nachamkin, I, Hu, B, Zaoutis, TE. The impact of household transmission on duration of outpatient colonization with methicillin-resistant Staphylococcus aureus . Epidemiol Infect 2010;138:683685.CrossRefGoogle Scholar
248. Nouwen, JL, Ott, A, Kluytmans-Vandenbergh, MF, et al. Predicting the Staphylococcus aureus nasal carrier state: derivation and validation of a “culture rule.” Clin Infect Dis 2004;39:806811.CrossRefGoogle ScholarPubMed
249. Gesualdo, F, Bongiorno, D, Rizzo, C, et al. MRSA nasal colonization in children: prevalence meta-analysis, review of risk factors and molecular genetics. Pediatr Infect Dis J 2013;32:479485.CrossRefGoogle Scholar
250. Albrich, WC, Harbarth, S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis 2008;8:289301.CrossRefGoogle ScholarPubMed
251. Hawkins, G, Stewart, S, Blatchford, O, Reilly, J. Should healthcare workers be screened routinely for meticillin-resistant Staphylococcus aureus? a review of the evidence. J Hosp Infect 2011;77:285289.CrossRefGoogle Scholar
252. Grant, PS, Charns, LG, Rawot, BW, Benedetti, SG. Consideration to culture health care workers related to increased methicillin-resistant Staphylococcus aureus activity in a neonatal intensive care unit. Am J Infect Control 2008;36:638643.CrossRefGoogle Scholar
253. Fritz, SA, Garbutt, J, Elward, A, Shannon, W, Storch, GA. Prevalence of and risk factors for community-acquired methicillin-resistant and methicillin-sensitive Staphylococcus aureus colonization in children seen in a practice-based research network. Pediatrics 2008;121:10901098.CrossRefGoogle Scholar
254. Barrett, TW, Moran, GJ. Methicillin-resistant Staphylococcus aureus infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000–2003. Ann Emerg Med 2004;43:4347.CrossRefGoogle Scholar
255. Kazakova, SV, Hageman, JC, Matava, M, et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med 2005;352:468475.CrossRefGoogle ScholarPubMed
256. Creech, CB, Saye, E, McKenna, BD, et al. One-year surveillance of methicillin-resistant Staphylococcus aureus nasal colonization and skin and soft tissue infections in collegiate athletes. Arch Pediatr Adolesc Med 2010;164:615620.CrossRefGoogle Scholar
257. Oller, AR, Province, L, Curless, B. Staphylococcus aureus recovery from environmental and human locations in 2 collegiate athletic teams. J Athl Train 2010;45:222229.CrossRefGoogle ScholarPubMed
258. Roberts, MC, Soge, OO, No, D, Helgeson, SE, Meschke, JS. Characterization of methicillin-resistant Staphylococcus aureus isolated from public surfaces on a university campus, student homes and local community. J Appl Microbiol 2011;110:15311537.CrossRefGoogle Scholar
259. Begier, EM, Frenette, K, Barrett, NL, et al. A high-morbidity outbreak of methicillin-resistant Staphylococcus aureus among players on a college football team, facilitated by cosmetic body shaving and turf burns. Clin Infect Dis 2004;39:14461453.CrossRefGoogle ScholarPubMed
260. Nguyen, DM, Mascola, L, Brancoft, E. Recurring methicillin-resistant Staphylococcus aureus infections in a football team. Emerg Infect Dis 2005;11:526532.CrossRefGoogle Scholar
261. Archibald, LK, Shapiro, J, Pass, A, Rand, K, Southwick, F. Methicillin-resistant Staphylococcus aureus infection in a college football team: risk factors outside the locker room and playing field. Infect Control Hosp Epidemiol 2008;29:450453.CrossRefGoogle Scholar
262. Romano, R, Lu, D, Holtom, P. Outbreak of community-acquired methicillin-resistant Staphylococcus aureus skin infections among a collegiate football team. J Athl Train 2006;41:141145.Google Scholar
263. Rihn, JA, Posfay-Barbe, K, Harner, CD, et al. Community-acquired methicillin-resistant Staphylococcus aureus outbreak in a local high school football team: unsuccessful interventions. Pediatr Infect Dis J 2005;24:841843.CrossRefGoogle Scholar
264. Bowers, AL, Huffman, GR, Sennett, BJ. Methicillin-resistant Staphylococcus aureus infections in collegiate football players. Med Sci Sports Exerc 2008;40:13621367.CrossRefGoogle ScholarPubMed
265. Stevens, MP, Bearman, G, Rosato, A, Edmond, M. Community-acquired methicillin resistant Staphylococcus aureus in a women’s collegiate basketball team. South Med J 2008;101:10671068.CrossRefGoogle Scholar
266. Lear, A, McCord, G, Peiffer, J, Watkins, RR, Parikh, A, Warrington, S. Incidence of Staphylococcus aureus nasal colonization and soft tissue infection among high school football players. J Am Board Fam Med 2011;24:429435.CrossRefGoogle ScholarPubMed
267. Lindenmayer, JM, Schoenfeld, S, O’Grady, R, Carney, JK. Methicillin-resistant Staphylococcus aureus in a high school wrestling team and the surrounding community. Arch Intern Med 1998;158:895899.CrossRefGoogle Scholar
268. Centers for Disease Control and Prevention. Methicillin-resistant Staphylococcus aureus (MRSA) infections: prevention information and advice for athletes. http://www.cdc.gov/mrsa/groups/advice-for-athletes.html. Published 2010. Accessed October 21, 2013.Google Scholar
269. de Almeida, MB, Zerbinati, RM, Tateno, AF, et al. Rhinovirus C and respiratory exacerbations in children with cystic fibrosis. Emerg Infect Dis 2010;16:996999.CrossRefGoogle ScholarPubMed
270. Smyth, AR, Smyth, RL, Tong, CY, Hart, CA, Heaf, DP. Effect of respiratory virus infections including rhinovirus on clinical status in cystic fibrosis. Arch Dis Child 1995;73:117120.CrossRefGoogle ScholarPubMed
271. Wat, D, Gelder, C, Hibbitts, S, et al. The role of respiratory viruses in cystic fibrosis. J Cyst Fibros 2008;7:320328.CrossRefGoogle ScholarPubMed
272. Hoek, RA, Paats, MS, Pas, SD, et al. Incidence of viral respiratory pathogens causing exacerbations in adult cystic fibrosis patients. Scand J Infect Dis 2013;45:6569.CrossRefGoogle ScholarPubMed
273. Ortiz, JR, Neuzil, KM, Victor, JC, Wald, A, Aitken, ML, Goss, CH. Influenza-associated cystic fibrosis pulmonary exacerbations. Chest 2010;137:852860.CrossRefGoogle ScholarPubMed
274. Asner, S, Waters, V, Solomon, M, et al. Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 2012;11:433439.CrossRefGoogle ScholarPubMed
275. Poritz, MA, Blaschke, AJ, Byington, CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS ONE 2011;6:e26047.CrossRefGoogle ScholarPubMed
276. National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention. http://www.cdc.gov/ncezid. Published 2013. Accessed January 13, 2014.Google Scholar
277. Maeda, Y, Stanley, T, Stirling, J, et al. No evidence of transmission of bacteria between reptiles and a CF patient—a case report of a young adult CF patient and reptiles. Zoonoses Public Health 2010;57:e47e53.CrossRefGoogle Scholar
278. Ner, Z, Ross, LA, Horn, MV, et al. Bordetella bronchiseptica infection in pediatric lung transplant recipients. Pediatr Transplant 2003;7:413417.CrossRefGoogle ScholarPubMed
279. Hemsworth, S, Pizer, B. Pet ownership in immunocompromised children—a review of the literature and survey of existing guidelines. Eur J Oncol Nurs 2006;10:117127.CrossRefGoogle Scholar
280. Register, KB, Sukumar, N, Palavecino, EL, Rubin, BK, Deora, R. Bordetella bronchiseptica in a paediatric cystic fibrosis patient: possible transmission from a household cat. Zoonoses Public Health 2012;59:246250.CrossRefGoogle Scholar
281. Mohan, K, Fothergill, JL, Storrar, J, Ledson, MJ, Winstanley, C, Walshaw, MJ. Transmission of Pseudomonas aeruginosa epidemic strain from a patient with cystic fibrosis to a pet cat. Thorax 2008;63:839840.CrossRefGoogle Scholar
282. Loeffler, A, Lloyd, DH. Companion animals: a reservoir for methicillin-resistant Staphylococcus aureus in the community? Epidemiol Infect 2010;138:595605.CrossRefGoogle Scholar
283. Ferreira, JP, Fowler, VG Jr, Correa, MT, Lyman, R, Ruffin, F, Anderson, KL. Transmission of methicillin-resistant Staphylococcus aureus between human and hamster. J Clin Microbiol 2011;49:16791680.CrossRefGoogle ScholarPubMed
284. Lewis, FM, Marsh, BJ, von Reyn, CF. Fish tank exposure and cutaneous infections due to Mycobacterium marinum: tuberculin skin testing, treatment, and prevention. Clin Infect Dis 2003;37:390397.CrossRefGoogle ScholarPubMed
285. Pandian, TK, Deziel, PJ, Otley, CC, Eid, AJ, Razonable, RR. Mycobacterium marinum infections in transplant recipients: case report and review of the literature. Transpl Infect Dis 2008;10:358363.CrossRefGoogle ScholarPubMed
286. Centers for Disease Control and Prevention. Healthy Pets Healthy People. http://www.cdc.gov/healthypets/. Published 2013. Accessed January 13, 2014.Google Scholar
287. Lefebvre, SL, Golab, GC, Christensen, E, et al. Guidelines for animal-assisted interventions in health care facilities. Am J Infect Control 2008;36:7885.CrossRefGoogle ScholarPubMed
288. Curran, KA, Miller, J. Guidelines for animal-assisted interventions in health care facilities. Am J Infect Control 2009;37:257258.CrossRefGoogle ScholarPubMed
289. US Department of Justice Civil Rights Division. Commonly Asked Questions about Service Animals in Places of Business. http://www.ada.gov/qasrvc.htm. Published 2008. Accessed January 13, 2014.Google Scholar
290. Sheahan, T, Rockx, B, Donaldson, E, et al. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J Virol 2008;82:22742285.CrossRefGoogle ScholarPubMed
291. Moore, JE, Goldsmith, CE, Millar, BC, et al. Cystic fibrosis and the isolation of Pseudomonas aeruginosa from horses. Vet Rec 2008;163:399400.CrossRefGoogle ScholarPubMed
292. Chowdhury, P, Heinemann, JA. The general secretory pathway of Burkholderia gladioli pv. agaricicola BG164R is necessary for cavity disease in white button mushrooms. Appl Environ Microbiol 2006;72:35583565.CrossRefGoogle Scholar
293. Fiore, A, Laevens, S, Bevivino, A, et al. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ Microbiol 2001;3:137143.CrossRefGoogle ScholarPubMed
294. Miller, SC, LiPuma, JJ, Parke, JL. Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 2002;68:37503758.CrossRefGoogle ScholarPubMed
295. Ramette, A, LiPuma, JJ, Tiedje, JM. Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl Environ Microbiol 2005;71:11931201.CrossRefGoogle ScholarPubMed
296. Vermis, K, Brachkova, M, Vandamme, P, Nelis, H. Isolation of Burkholderia cepacia complex genomovars from waters. Syst Appl Microbiol 2003;26:595600.CrossRefGoogle Scholar
297. Muhdi, K, Edenborough, FP, Gumery, L, et al. Outcome for patients colonised with Burkholderia cepacia in a Birmingham adult cystic fibrosis clinic and the end of an epidemic. Thorax 1996;51:374377.CrossRefGoogle Scholar
298. Coenye, T, Spilker, T, Van Schoor, A, LiPuma, JJ, Vandamme, P. Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax 2004;59:952954.CrossRefGoogle Scholar
299. Fisher, MC, LiPuma, JJ, Dasen, SE, et al. Source of Pseudomonas cepacia: ribotyping of isolates from patients and from the environment. J Pediatr 1993;123:745747.CrossRefGoogle ScholarPubMed
300. LiPuma, JJ, Spilker, T, Coenye, T, Gonzalez, CF. An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 2002;359:20022003.CrossRefGoogle ScholarPubMed
301. Baldwin, A, Mahenthiralingam, E, Drevinek, P, et al. Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis 2007;13:458461.CrossRefGoogle ScholarPubMed
302. Mahenthiralingam, E, Baldwin, A, Dowson, CG. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 2008;104:15391551.CrossRefGoogle ScholarPubMed
303. McNeely, D, Moore, JE, Elborn, JS, Millar, BC, Rendall, J, Dooley, JS. Isolation of Burkholderia cenocepacia and Burkholderia vietnamiensis from human sewage. Int J Environ Health Res 2009;19:157162.CrossRefGoogle ScholarPubMed
304. Remold, SK, Brown, CK, Farris, JE, Hundley, TC, Perpich, JA, Purdy, ME. Differential habitat use and niche partitioning by Pseudomonas species in human homes. Microb Ecol 2011;62:505517.CrossRefGoogle ScholarPubMed
305. Regnath, T, Kreutzberger, M, Illing, S, Oehme, R, Liesenfeld, O. Prevalence of Pseudomonas aeruginosa in households of patients with cystic fibrosis. Int J Hyg Environ Health 2004;207:585588.CrossRefGoogle ScholarPubMed
306. Schelstraete, P, Van Daele, S, De Boeck, K, et al. Pseudomonas aeruginosa in the home environment of newly infected cystic fibrosis patients. Eur Respir J 2008;31:822829.CrossRefGoogle ScholarPubMed
307. Barben, J, Hafen, G, Schmid, J. Pseudomonas aeruginosa in public swimming pools and bathroom water of patients with cystic fibrosis. J Cyst Fibros 2005;4:227231.CrossRefGoogle ScholarPubMed
308. Rosenfeld, M, Emerson, J, McNamara, S, et al. Risk factors for age at initial Pseudomonas acquisition in the cystic fibrosis epic observational cohort. J Cyst Fibros 2012;11:446453.CrossRefGoogle ScholarPubMed
309. Romling, U, Wingender, J, Muller, H, Tummler, B. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 1994;60:17341738.Google Scholar
310. Hauben, L, Vauterin, L, Moore, ER, Hoste, B, Swings, J. Genomic diversity of the genus Stenotrophomonas . Int J Syst Bacteriol 1999;49(pt 4):17491760.CrossRefGoogle ScholarPubMed
311. Spencer, RC. The emergence of epidemic, multiple-antibiotic-resistant Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia . J Hosp Infect 1995;30(suppl):453464.CrossRefGoogle Scholar
312. Kay, SE, Clark, RA, White, KL, Peel, MM. Recurrent Achromobacter piechaudii bacteremia in a patient with hematological malignancy. J Clin Microbiol 2001;39:808810.CrossRefGoogle Scholar
313. Falkinham, JO 3rd. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 2009;107:356367.CrossRefGoogle Scholar
314. De Groote, MA, Pace, NR, Fulton, K, Falkinham, JO 3rd. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol 2006;72:76027606.CrossRefGoogle ScholarPubMed
315. Fujita, K, Ito, Y, Hirai, T, et al. Genetic relatedness of Mycobacterium avium-intracellulare complex isolates from patients with pulmonary MAC disease and their residential soils. Clin Microbiol Infect 2013;19:537541.CrossRefGoogle ScholarPubMed
316. Decker, BK, Palmore, TN. The role of water in healthcare-associated infections. Curr Opin Infect Dis 2013;26:345351.CrossRefGoogle ScholarPubMed
317. Festini, F, Taccetti, G, Mannini, C, et al. Patient risk of contact with respiratory pathogens from inanimate surfaces in a cystic fibrosis outpatient clinic: a prospective study over a four-year period. Pediatr Pulmonol 2007;42:779784.CrossRefGoogle Scholar
318. Klausner, JD, Zukerman, C, Limaye, AP, Corey, L. Outbreak of Stenotrophomonas maltophilia bacteremia among patients undergoing bone marrow transplantation: association with faulty replacement of handwashing soap. Infect Control Hosp Epidemiol 1999;20:756758.CrossRefGoogle ScholarPubMed
319. Weber, DJ, Rutala, WA, Blanchet, CN, Jordan, M, Gergen, MF. Faucet aerators: a source of patient colonization with Stenotrophomonas maltophilia . Am J Infect Control 1999;27:5963.CrossRefGoogle ScholarPubMed
320. Denton, M, Rajgopal, A, Mooney, L, et al. Stenotrophomonas maltophilia contamination of nebulizers used to deliver aerosolized therapy to inpatients with cystic fibrosis. J Hosp Infect 2003;55:180183.CrossRefGoogle ScholarPubMed
321. Valdezate, S, Vindel, A, Martin-Davila, P, Del Saz, BS, Baquero, F, Canton, R. High genetic diversity among Stenotrophomonas maltophilia strains despite their originating at a single hospital. J Clin Microbiol 2004;42:693699.CrossRefGoogle Scholar
322. Donskey, CJ. Does improving surface cleaning and disinfection reduce health care–associated infections? Am J Infect Control 2013;41:S12S19.CrossRefGoogle Scholar
323. Harris, AD. How important is the environment in the emergence of nosocomial antimicrobial-resistant bacteria? Clin Infect Dis 2008;46:686688.CrossRefGoogle ScholarPubMed
324. Otter, JA, Yezli, S, French, GL. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol 2011;32:687699.CrossRefGoogle ScholarPubMed
325. Weber, DJ, Rutala, WA, Miller, MB, Huslage, K, Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care–associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. Am J Infect Control 2010;38:S25S33.Google Scholar
326. Hota, B, Blom, DW, Lyle, EA, Weinstein, RA, Hayden, MK. Interventional evaluation of environmental contamination by vancomycin-resistant enterococci: failure of personnel, product, or procedure? J Hosp Infect 2009;71:123131.CrossRefGoogle ScholarPubMed
327. Boyce, JM, Havill, NL, Otter, JA, Adams, NM. Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract. Infect Control Hosp Epidemiol 2007;28:11421147.CrossRefGoogle ScholarPubMed
328. Edmond, MB, Wenzel, RP, Pasculle, AW. Vancomycin-resistant Staphylococcus aureus: perspectives on measures needed for control. Ann Intern Med 1996;124:329334.CrossRefGoogle Scholar
329. Weber, DJ, Anderson, D, Rutala, WA. The role of the surface environment in healthcare-associated infections. Curr Opin Infect Dis 2013;26:338344.CrossRefGoogle ScholarPubMed
330. Vajravelu, RK, Guerrero, DM, Jury, LA, Donskey, CJ. Evaluation of stethoscopes as vectors of Clostridium difficile and methicillin-resistant Staphylococcus aureus . Infect Control Hosp Epidemiol 2012;33:9698.CrossRefGoogle ScholarPubMed
331. Blydt-Hansen, T, Subbarao, K, Quennec, P, McDonald, J. Recovery of respiratory syncytial virus from stethoscopes by conventional viral culture and polymerase chain reaction. Pediatr Infect Dis J 1999;18:164165.CrossRefGoogle Scholar
332. Kerr, JR, Martin, H, Chadwick, MV,