Skip to main content
×
×
Home

Noninfectious Hospital Adverse Events Decline After Elimination of Contact Precautions for MRSA and VRE

  • Elise M. Martin (a1), Brandy Bryant (a2), Tristan R. Grogan (a3), Zachary A. Rubin (a1), Dana L. Russell (a4), David Elashoff (a3) and Daniel Z. Uslan (a1)...
Abstract
OBJECTIVE

To evaluate the impact of discontinuing routine contact precautions (CP) for endemic methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) on hospital adverse events.

DESIGN

Retrospective, nonrandomized, observational, quasi-experimental study.

SETTING

Academic medical center with single-occupancy rooms.

PARTICIPANTS

Inpatients.

METHODS

We compared hospital reportable adverse events 1 year before and 1 year after discontinuation of routine CP for endemic MRSA and VRE (preintervention and postintervention periods, respectively). Throughout the preintervention period, daily chlorhexidine gluconate bathing was expanded to nearly all inpatients. Chart reviews were performed to identify which patients and events were associated with CP for MRSA/VRE in the preintervention period as well as the patients that would have met prior criteria for MRSA/VRE CP but were not isolated in the postintervention period. Adverse events during the 2 periods were compared using segmented and mixed-effects Poisson regression models.

RESULTS

There were 24,732 admissions in the preintervention period and 25,536 in the postintervention period. Noninfectious adverse events (ie, postoperative respiratory failure, hemorrhage/hematoma, thrombosis, wound dehiscence, pressure ulcers, and falls or trauma) decreased by 19% (12.3 to 10.0 per 1,000 admissions, P=.022) from the preintervention to the postintervention period. There was no significant difference in the rate of infectious adverse events after CP discontinuation (20.7 to 19.4 per 1,000 admissions, P=.33). Patients with MRSA/VRE showed the largest reduction in noninfectious adverse events after CP discontinuation, with a 72% reduction (21.4 to 6.08 per 1,000 MRSA/VRE admissions; P<.001).

CONCLUSION

After discontinuing routine CP for endemic MRSA/VRE, the rate of noninfectious adverse events declined, especially in patients who no longer required isolation. This suggests that elimination of CP may substantially reduce noninfectious adverse events.

Infect Control Hosp Epidemiol 2018;788–796

Copyright
Corresponding author
Address correspondence to Elise Martin, MD, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 10833 LeConte Ave, 37-121 CHS, Los Angeles, CA 90095 (emartin@mednet.ucla.edu).
Footnotes
Hide All

PREVIOUS PRESENTATION. The data in this manuscript were presented in part (Poster no. 616) at the SHEA Spring 2016 conference: Science Guiding Prevention, in Atlanta, Georgia, on May 20, 2016.

Footnotes
References
Hide All
1. Calfee, DP, Salgado, CD, Milstone, AM, et al. Strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 2014;35:772796.
2. Muto, CA, Jernigan, JA, Ostrowsky, BE, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect Control Hosp Epidemiol 2003;24:362386.
3. Morgan, DJ, Murthy, R, Munoz-Price, LS, et al. Reconsidering contact precautions for endemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Infect Control Hosp Epidemiol 2015;36:11631172.
4. Fatkenheuer, G, Hirschel, B, Harbarth, S. Screening and isolation to control meticillin-resistant Staphylococcus aureus: sense, nonsense, and evidence. Lancet 2015;385:11461149.
5. Morgan, DJ, Kaye, KS, Diekema, DJ. Reconsidering isolation precautions for endemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. JAMA 2014;312:13951396.
6. Martin, EM, Russell, D, Rubin, Z, et al. Elimination of routine contact precautions for endemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus: a retrospective quasi-experimental study. Infect Control Hosp Epidemiol 2016;37:13231330.
7. Edmond, MB, Masroor, N, Stevens, MP, Ober, J, Bearman, G. The impact of discontinuing contact precautions for VRE and MRSA on device-associated infections. Infect Control Hosp Epidemiol 2015;36:978980.
8. McKinnell, JA, Eells, SJ, Clark, E, et al. Discontinuation of contact precautions with the introduction of universal daily chlorhexidine bathing. Epidemiol Infect 2017;145:25752581.
9. Bearman, GM, Marra, AR, Sessler, CN, et al. A controlled trial of universal gloving versus contact precautions for preventing the transmission of multidrug-resistant organisms. Am J Infect Control 2007;35:650655.
10. Derde, LP, Cooper, BS, Goossens, H, et al. Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial. Lancet Infect Dis 2014;14:3139.
11. Harbarth, S, Fankhauser, C, Schrenzel, J, et al. Universal screening for methicillin-resistant Staphylococcus aureus at hospital admission and nosocomial infection in surgical patients. JAMA 2008;299:11491157.
12. Harris, AD, Pineles, L, Belton, B, et al. Universal glove and gown use and acquisition of antibiotic-resistant bacteria in the ICU: a randomized trial. JAMA 2013;310:15711580.
13. Huang, SS, Yokoe, DS, Hinrichsen, VL, et al. Impact of routine intensive care unit surveillance cultures and resultant barrier precautions on hospital-wide methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2006;43:971978.
14. Huskins, WC, Huckabee, CM, O’Grady, NP, et al. Intervention to reduce transmission of resistant bacteria in intensive care. N Engl J Med 2011;364:14071418.
15. Jain, R, Kralovic, SM, Evans, ME, et al. Veterans Affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections. N Engl J Med 2011;364:14191430.
16. Lucet, JC, Paoletti, X, Lolom, I, et al. Successful long-term program for controlling methicillin-resistant Staphylococcus aureus in intensive care units. Intensive Care Med 2005;31:10511057.
17. Marshall, C, Richards, M, McBryde, E. Do active surveillance and contact precautions reduce MRSA acquisition? A prospective interrupted time series. PLoS One 2013;8:e58112.
18. Robicsek, A, Beaumont, JL, Paule, SM, et al. Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann Intern Med 2008;148:409418.
19. Safdar, N, Marx, J, Meyer, NA, Maki, DG. Effectiveness of preemptive barrier precautions in controlling nosocomial colonization and infection by methicillin-resistant Staphylococcus aureus in a burn unit. Am J Infect Control 2006;34:476483.
20. De Angelis, G, Cataldo, MA, De Waure, C, et al. Infection control and prevention measures to reduce the spread of vancomycin-resistant enterococci in hospitalized patients: a systematic review and meta-analysis. J Antimicrob Chemother 2014;69:11851192.
21. Stelfox, HT, Bates, DW, Redelmeier, DA. Safety of patients isolated for infection control. JAMA 2003;290:18991905.
22. Karki, S, Leder, K, Cheng, AC. Patients under contact precautions have an increased risk of injuries and medication errors: a retrospective cohort study. Infect Control Hosp Epidemiol 2013;34:11181120.
23. Reed, CR, Ferguson, RA, Peng, Y, et al. Contact isolation is a risk factor for venous thromboembolism in trauma patients. J Trauma Acute Care Surg 2015;79:833837.
24. Dashiell-Earp, CN, Bell, DS, Ang, AO, Uslan, DZ. Do physicians spend less time with patients in contact isolation? A time-motion study of internal medicine interns. JAMA Intern Med 2014;174:814815.
25. Evans, HL, Shaffer, MM, Hughes, MG, et al. Contact isolation in surgical patients: A barrier to care? Surgery 2003;134:180188.
26. Masse, V, Valiquette, L, Boukhoudmi, S, et al. Impact of methicillin-resistant Staphylococcus aureus contact isolation units on medical care. PLoS One 2013;8:e57057.
27. Morgan, DJ, Pineles, L, Shardell, M, et al. The effect of contact precautions on healthcare worker activity in acute care hospitals. Infect Control Hosp Epidemiol 2013;34:6973.
28. Saint, S, Higgins, LA, Nallamothu, BK, Chenoweth, C. Do physicians examine patients in contact isolation less frequently? A brief report. Am J Infect Control 2003;31:354356.
29. Gilligan, P, Quirke, M, Winder, S, Humphreys, H. Impact of admission screening for methicillin-resistant Staphylococcus aureus on the length of stay in an emergency department. J Hosp Infect 2010;75:99102.
30. McLemore, A, Bearman, G, Edmond, MB. Effect of contact precautions on wait time from emergency room disposition to inpatient admission. Infect Control Hosp Epidemiol 2011;32:298299.
31. Goldszer, RC, Tamplin, E, Yokoe, DS, et al. A program to remove patients from unnecessary contact precautions. J Clin Outcome Manage 2002;9:553556.
32. Tran, K, Bell, C, Stall, N, et al. The effect of hospital isolation precautions on patient outcomes and cost of care: a multi-site, retrospective, propensity score-matched cohort study. J Gen Intern Med 2017;32:262268.
33. Day, HR, Morgan, DJ, Himelhoch, S, Young, A, Perencevich, EN. Association between depression and contact precautions in veterans at hospital admission. Am J Infect Control 2011;39:163165.
34. Mehrotra, P, Croft, L, Day, HR, et al. Effects of contact precautions on patient perception of care and satisfaction: a prospective cohort study. Infect Control Hosp Epidemiol 2013;34:10871093.
35. Croft, LD, Liquori, M, Ladd, J, et al. The effect of contact precautions on frequency of hospital adverse events. Infect Control Hosp Epidemiol 2015;36:12681274.
36. Croft, LD, Harris, AD, Pineles, L, et al. The effect of universal glove and gown use on adverse events in intensive care unit patients. Clin Infect Dis 2015;61:545553.
37. Patient safety indicators overview. Agency for Healthcare Research and Quality website. http://www.qualityindicators.ahrq.gov/modules/psi_overview.aspx. Accessed January 17, 2017.
38. Hospital-acquired conditions. Centers for Medicare and Medicaid Services website. https://www.cms.gov/medicare/medicare-fee-for-service-payment/hospitalacqcond/hospital-acquired_conditions.html. Published 2015. Accessed January 17, 2017.
39. National Healthcare Safety Network (NHSN) patient safety component manual. Centers for Disease Controla nd Prevention website. https://www.cdc.gov/nhsn/pdfs/validation/2017/pcsmanual_2017.pdf. Published 2017. Accessed April 5, 2018.
40. Wagner, AK, Soumerai, SB, Zhang, F, Ross-Degnan, D. Segmented regression analysis of interrupted time series studies in medication use research. J Clin Pharm Therapeut 2002;27:299309.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 29
Total number of PDF views: 361 *
Loading metrics...

Abstract views

Total abstract views: 2158 *
Loading metrics...

* Views captured on Cambridge Core between 10th May 2018 - 19th July 2018. This data will be updated every 24 hours.