Skip to main content Accessibility help

The Prevalence and Molecular Epidemiology of Multidrug-Resistant Enterobacteriaceae Colonization in a Pediatric Intensive Care Unit

  • Nuntra Suwantarat (a1) (a2), Latania K. Logan (a3) (a4), Karen C. Carroll (a1), Robert A. Bonomo (a4) (a5) (a6) (a7), Patricia J. Simner (a1), Susan D. Rudin (a6) (a7), Aaron M. Milstone (a8), Tsigereda Tekle (a1), Tracy Ross (a1) and Pranita D. Tamma (a8)...



To determine the prevalence and acquisition of extended-spectrum β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs), and carbapenemases (“MDR Enterobacteriaceae”) colonizing children admitted to a pediatric intensive care unit (PICU).


Prospective study.


40-bed PICU.


Admission and weekly thereafter rectal surveillance swabs were collected on all pediatric patients during a 6-month study period. Routine phenotypic identification and antibiotic susceptibility testing were performed. Enterobacteriaceae displaying characteristic resistance profiles underwent further molecular characterization to identify genetic determinants of resistance likely to be transmitted on mobile genetic elements and to evaluate relatedness of strains including DNA microarray, multilocus sequence typing, repetitive sequence-based PCR, and hsp60 sequencing typing.


Evaluating 854 swabs from unique children, the overall prevalence of colonization with an MDR Enterobacteriaceae upon admission to the PICU based on β-lactamase gene identification was 4.3% (n=37), including 2.8% ESBLs (n=24), 1.3% pAmpCs (n=11), and 0.2% carbapenemases (n=2). Among 157 pediatric patients contributing 603 subsequent weekly swabs, 6 children (3.8%) acquired an incident MDR Enterobacteriaceae during their PICU stay. One child acquired a pAmpC (E. coli containing bla DHA) related to an isolate from another patient.


Approximately 4% of children admitted to a PICU were colonized with MDR Enterobacteriaceae (based on β-lactamase gene identification) and an additional 4% of children who remained in the PICU for at least 1 week acquired 1 of these organisms during their PICU stay. The acquired MDR Enterobacteriaceae were relatively heterogeneous, suggesting that a single source was not responsible for the introduction of these resistance mechanisms into the PICU setting.

Infect Control Hosp Epidemiol 2016;37:535–543


Corresponding author

Address correspondence to Pranita D. Tamma, MD, MHS, The Johns Hopkins University School of Medicine, 200 North Wolfe St., Suite 3149, Baltimore, MD 21287 (


Hide All
1. Lukac, PJ, Bonomo, RA, Logan, LK. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in children: old foe, emerging threat. Clin Infect Dis 2015;60:13891397.
2. Logan, LK. Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Clin Infect Dis 2012;55:852859.
3. Cantey, JB, Sreeramoju, P, Jaleel, M, et al. Prompt control of an outbreak caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. J Pediatr 2013;163:672679; e1–3.
4. Tamma, PD, Savard, P, Pal, T, Sonnevend, A, Perl, TM, Milstone, AM. An outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2012;33:631634.
5. Abdel-Hady, H, Hawas, S, El-Daker, M, El-Kady, R. Extended-spectrum beta-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit. J Perinatol 2008;28:685690.
6. Stone, PW, Gupta, A, Loughrey, M, et al. Attributable costs and length of stay of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2003;24:601606.
7. Huang, Y, Zhuang, S, Du, M. Risk factors of nosocomial infection with extended-spectrum beta-lactamase-producing bacteria in a neonatal intensive care unit in China. Infection 2007;35:339345.
8. Qin, X, Zerr, DM, Weissman, SJ, et al. Prevalence and mechanisms of broad-spectrum beta-lactam resistance in Enterobacteriaceae: a children’s hospital experience. Antimicrob Agents Chemother 2008;52:39093914.
9. Weissman, SJ, Adler, A, Qin, X, Zerr, DM. Emergence of extended-spectrum beta-lactam resistance among Escherichia coli at a US academic children’s hospital is clonal at the sequence type level for CTX-M-15, but not for CMY-2. Int J Antimicrob Agents 2013;41:414420.
10. Blaschke, AJ, Korgenski, EK, Daly, JA, LaFleur, B, Pavia, AT, Byington, CL. Extended-spectrum beta-lactamase-producing pathogens in a children’s hospital: a 5-year experience. Am J Infect Control 2009;37:435441.
11. Chandramohan, L, Revell, PA. Prevalence and molecular characterization of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in a pediatric patient population. Antimicrob Agents Chemother 2012;56:47654770.
12. User Manual, Check-MDR CT103XL. Check-Points Rapid Molecular Detection website. Accessed 13 July 2015.
13. Tartof, SY, Solberg, OD, Manges, AR, Riley, LW. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol 2005;43:58605864.
14. Diancourt, L, Passet, V, Verhoef, J, Grimont, PA, Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005;43:41784182.
15. Mathers, AJ, Peirano, G, Pitout, JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015;28:565591.
16. Pitout, JD, Campbell, L, Church, DL, Wang, PW, Guttman, DS, Gregson, DB. Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of Escherichia coli clone ST131 producing CTX-M-15. J Clin Microbiol 2009;47:12121215.
17. Hoffmann, H, Roggenkamp, A. Population genetics of the nomenspecies Enterobacter cloacae . Appl Environ Microbiol 2003;69:53065318.
18. Kiedrowski, LM, Guerrero, DM, Perez, F, et al. Carbapenem-resistant Enterobacter cloacae isolates producing KPC-3, North Dakota, USA. Emerging Infect Dis 2014;20:15831585.
19. Clermont, O, Bonacorsi, S, Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000;66:45554558.
20. Tschudin-Sutter, S, Frei, R, Dangel, M, Stranden, A, Widmer, AF. Rate of transmission of extended-spectrum beta-lactamase-producing enterobacteriaceae without contact isolation. Clin Infect Dis 2012;55:15051511.
21. Tschudin-Sutter, S, Frei, R, Dangel, M, Stranden, A, Widmer, AM. Nosocomial spread of extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae without contact isolation: a prospective observational study. Abstract 0121 presented at the 22nd European Congress of Clinical Microbiology and Infectious Diseases, March 31–April 3, 2012, London, United Kingdom.
22. Ohmagari, N, Kurai, H, Yamagishi, Y, Mikamo, H. Are strict isolation policies based on susceptibility testing actually effective in the prevention of the nosocomial spread of multi-drug-resistant Gram-negative rods? Am J Infect Control 2014;42:739743.
23. Han, JH, Bilker, WB, Nachamkin, I, et al. The effect of a hospital-wide urine culture screening intervention on the incidence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species. Infect Control Hosp Epidemiol 2013;34:11601166.
24. Hilty, M, Betsch, BY, Bogli-Stuber, K, et al. Transmission dynamics of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis 2012;55:967975.
25. Dayan, N, Dabbah, H, Weissman, I, Aga, I, Even, L, Glikman, D. Urinary tract infections caused by community-acquired extended-spectrum beta-lactamase-producing and nonproducing bacteria: a comparative study. J Pediatr 2013;163:14171421.
26. Fan, NC, Chen, HH, Chen, CL, et al. Rise of community-onset urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli in children. J Microbiol Immunol Infect 2014;47:399405.
27. Megged, O. Extended-spectrum beta-lactamase-producing bacteria causing community-acquired urinary tract infections in children. Pediatric Nephrol 2014;29:15831587.
28. Morgand, M, Vimont, S, Bleibtreu, A, et al. Extended-spectrum beta-lactamase-producing Escherichia coli infections in children: are community-acquired strains different from nosocomial strains? Int J Med Microbiol 2014;304:970976.
29. Madigan, T, Johnson, JR, Clabots, C, et al. Extensive household outbreak of urinary tract infection and intestinal colonization due to extended-spectrum beta-lactamase-producing Escherichia coli sequence type 131. Clin Infect Dis 2015;61:e5e12.
30. Kaarme, J, Molin, Y, Olsen, B, Melhus, A. Prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in healthy Swedish preschool children. Acta paediatrica 2013;102:655660.
31. Guh, AY, Bulens, SN, Jacob, JT, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US Communities, 2012–2013. J Am Med Asso 2015;314:14791487.
32. Logan, LK, Renschler, JP, Gandra, S, et al. Carbapenem-resistant Enterobacteriaceae in children, United States, 1999–2012. Emerg Infect Dis 2015;21:20142021.
33. Chiotos, K, Han, J, Tamma, PD. Carbapenem-resistant Enterobacteriaceae infections in children. Curr Infect Dis Rept 2016 Jan18:2. doi: 10.1007/s11908-015-0510-9.
34. Marik, PE, Hedman, L. What’s in a day? Determining intensive care unit length of stay. Crit Care Med 2000;28:20902093.
35. Weissman, C. Analyzing intensive care unit length of stay data: problems and possible solutions. Crit Care Med 1997;25:15941600.

The Prevalence and Molecular Epidemiology of Multidrug-Resistant Enterobacteriaceae Colonization in a Pediatric Intensive Care Unit

  • Nuntra Suwantarat (a1) (a2), Latania K. Logan (a3) (a4), Karen C. Carroll (a1), Robert A. Bonomo (a4) (a5) (a6) (a7), Patricia J. Simner (a1), Susan D. Rudin (a6) (a7), Aaron M. Milstone (a8), Tsigereda Tekle (a1), Tracy Ross (a1) and Pranita D. Tamma (a8)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed