Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-qcsxw Total loading time: 0.209 Render date: 2022-08-08T18:53:33.956Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The entropy principle, and the influence of sociological pressures on SETI

Published online by Cambridge University Press:  27 May 2010

V. Bozhilov
Affiliation:
Faculty of Physics, Department of Astronomy, Sofia University, Bulgaria email: archivl@yahoo.com
Duncan H. Forgan
Affiliation:
Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh email: dhf@roe.ac.uk

Abstract

We begin with the premise that the law of entropy could prove to be fundamental for the evolution of intelligent life and the advent of technological civilization. Building on recent theoretical results, we combine a modern approach to evolutionary theory with Monte Carlo realization techniques. A numerical test for a proposed significance of the law of entropy within the evolution of intelligent species is performed and results are compared with a neutral test hypothesis. Some clarifying aspects on the emergence of intelligent species arise and are discussed in the framework of contemporary astrobiology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annis, J. (1999). J. Br. Interplanet. Soc. 52, 19.Google Scholar
Carter, B. (2008). Int. J. Astrobiol. 7, 177.CrossRefGoogle Scholar
Ćirković, M.M. (2007). Int. J. Astrobiol. 6, 325.CrossRefGoogle Scholar
Cirkovic, M.M. (2008). J. Brit. Interplanet. Soc. 61, 246.Google Scholar
Dawkins, R. (1990). The Selfish Gene. Oxford University Press: New York.Google Scholar
Ehrenfreund, P. et al. ISSI Team (2002). Rep. Progr. Phys. 65, 1427.CrossRefGoogle Scholar
Forgan, D. (2009). Int. J. Astrobiol. 8, 121.CrossRefGoogle Scholar
Forgan, D. & Rice, K. (2010). Int. J. Astrobiol. 9, 73.CrossRefGoogle Scholar
Fu, S. (2007). e-prints arXiv:0712.2108.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977). Nature 268, 610.CrossRefGoogle Scholar
Jaakkola, S., El-Showk, S. & Annila, A. (2008). e-print arXiv:0807.0892.Google Scholar
Jaakkola, S., Sharma, V. & Annila, A. (2009). e-print arXiv:0906.0254.Google Scholar
Kaila, V.R. & Annila, A. (2008). Proc. Roy. Soc. A 464, 3055.CrossRefGoogle Scholar
Kardashev, N.S. (1964). Soviet Astronomy 8, 217221.Google Scholar
Lal, A.K. (2008). Astrophys. Space Sci. 317, 267.CrossRefGoogle Scholar
Learned, J.G., Pakvasa, S., Simmons, W.A. & Tata, X. (1994). Quart. J. Roy. Astron. Soc. 35, 321.Google Scholar
Lineweaver, C.H., Fenner, Y. & Gibson, B.K. (2004). Science 303, 59.CrossRefGoogle Scholar
Loeb, A. & Zaldarriaga, M. (2007). J. Cosmol. Astropart. Phys. 2007(1), 20.CrossRefGoogle Scholar
Manning, C.E. (2006). Amer. J. Sci. 306, 303.CrossRefGoogle Scholar
Miller, G.E. & Scalo, J.M. (1979). Astrophys. J. (Suppl. Ser.) 41, 513.CrossRefGoogle Scholar
Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P. & Friend, C.R. (1996). Nature 384, 55.CrossRefGoogle Scholar
Morris, S.C. (2006). Current Biol. 16, R826.CrossRefGoogle Scholar
Nam, K. & Bozhilov, V. (2009). Proc. Fifth Int. Conf. on Global Changes: Vulnerability, Mitigation And Adaptation (Intelligence and Evolutionary Mechanisms: Origin and Influence on the Ecosystems), pp. 156159. St. Kliment Ohridski University Press: Sofia.Google Scholar
Rocha-Pinto, H.J., Maciel, W.J., Scalo, J. & Flynn, C. (2000a). Astron. Astrophys.. 358, 850.Google Scholar
Rocha-Pinto, H.J., Maciel, W.J., Scalo, J. & Flynn, C. (2000b). Astron. Astrophys.. 358, 869.Google Scholar
Sharma, V. & Annila, A. (2007). Biophys. Chemistry 127, 123.CrossRefGoogle Scholar
Silagadze, Z.K. (2008). Acta Phys. Polon. B 39, 2943.Google Scholar
Spiegel, D.S., Menou, K. & Scharf, C.A. (2008). Astrophys. J. 681, 1609.CrossRefGoogle Scholar
Vukotic, B. & Cirkovic, M. (2007). Serbian Astron. J. 175, 45.CrossRefGoogle Scholar
Ward, P. & Brownlee, D. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe, Springer.Google Scholar
Würtz, P. & Annila, A. (2008). J. Biophys. 654, 8.Google Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The entropy principle, and the influence of sociological pressures on SETI
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The entropy principle, and the influence of sociological pressures on SETI
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The entropy principle, and the influence of sociological pressures on SETI
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *