Hostname: page-component-6b989bf9dc-wj8jn Total loading time: 0 Render date: 2024-04-15T02:20:39.332Z Has data issue: false hasContentIssue false

The evidence for and against astronomical impacts on climate change and mass extinctions: a review

Published online by Cambridge University Press:  14 July 2009

C.A.L. Bailer-Jones
Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, Germany e-mail:


Numerous studies over the past 30 years have suggested there is a causal connection between the motion of the Sun through the Galaxy and terrestrial mass extinctions or climate change. Proposed mechanisms include comet impacts (via perturbation of the Oort cloud), cosmic rays and supernovae, the effects of which are modulated by the passage of the Sun through the Galactic midplane or spiral arms. Supposed periodicities in the fossil record, impact cratering dates or climate proxies over the Phanerozoic (past 545 Myr) are frequently cited as evidence in support of these hypotheses. This remains a controversial subject, with many refutations and replies having been published. Here I review both the mechanisms and the evidence for and against the relevance of astronomical phenomena to climate change and evolution. This necessarily includes a critical assessment of time series analysis techniques and hypothesis testing. Some of the studies have suffered from flaws in methodology, in particular drawing incorrect conclusions based on ruling out a null hypothesis. I conclude that there is little evidence for intrinsic periodicities in biodiversity, impact cratering or climate on timescales of tens to hundreds of Myr. Although this does not rule out the mechanisms, the numerous assumptions and uncertainties involved in the interpretation of the geological data and in particular in the astronomical mechanisms suggest that Galactic midplane and spiral arm crossings have little impact on biological or climate variation above background level. Non-periodic impacts and terrestrial mechanisms (volcanism, plate tectonics, sea level changes), possibly occurring simultaneously, remain likely causes of many environmental catastrophes. Internal dynamics of the biosphere may also play a role. In contrast, there is little evidence supporting the idea that cosmic rays have a significant influence on climate through cloud formation. It seems likely that more than one mechanism has contributed to biodiversity variations over the past half Gyr.

Research Article
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abbott, D.H. & Isley, A.E. (2002). Extraterrestrial influences on mantle plume activity. Earth Planet. Sci. Lett. 205, 5362.CrossRefGoogle Scholar
Alroy, J. (2008). Dynamics of origination and extinction in the marine fossil record. Proc. Nat. Acad. Sci. 105, 11 53611 542.CrossRefGoogle ScholarPubMed
Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 10951108.CrossRefGoogle ScholarPubMed
Alvarez, W. (2003). Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology 3, 153161.CrossRefGoogle ScholarPubMed
Alvarez, W. & Muller, R.A. (1984). Evidence from crater ages for periodic impacts on the earth. Nature 308, 718720.CrossRefGoogle Scholar
Arens, N.C. & West, I.D. (2008). Press–pulse: a general theory of mass extinction? Paleobiology 34, 456471.CrossRefGoogle Scholar
Bailer-Jones, C.A.L. (2009). What will Gaia tell us about the Galactic disk? In The Galaxy Disk in Cosmological Context (Proc. Int. Astron. Union, IAU Symp.), vol. 254, eds Andersen, J., Bland-Hawthorn, J. & Nordström, B., pp. 475482. Cambridge University Press.Google Scholar
Bahcall, J.N. & Bahcall, S. (1985). The Sun's motion perpendicular to the galactic plane. Nature 316, 706708.CrossRefGoogle Scholar
Bambach, R.K. (2006). Phanerozoic biodiversity mass extinctions. Ann. Rev. Earth Planet. Sci. 34, 127155.CrossRefGoogle Scholar
Bergern, J.O. (2003). Could Fisher, Jeffreys and Neyman have agreed on testing? Statist. Sci. 18, 132.Google Scholar
Carslaw, K.S., Harrison, R.G. & Kirkby, J. (2002). Cosmic rays, clouds, and climate. Science 298, 17321737.CrossRefGoogle ScholarPubMed
Cincotta, P.M., Méndez, M. & Núñez, J.A. (1995). Astronomical time series analysis 1. A search for periodicity using information entropy. Astrophys. J. 449, 231235.CrossRefGoogle Scholar
Chapman, C.R. (2004). The hazard of near-Earth asteroid impacts on earth. Earth Planet. Sci. Lett. 222, 115.CrossRefGoogle Scholar
Christensen, R. (2005). Testing Fisher, Neyman, Pearson and Bayes. The American Statistician 59, 121126.CrossRefGoogle Scholar
Clube, S.V.M. & Napier, W.M. (1982a). Spiral arms, comets and terrestrial catastrophism. Quart. J. Royal Astronom. Soc. 23, 4566.Google Scholar
Clube, S.V.M. & Napier, W.M. (1982b). The role of episodic bombardment in geophysics. Earth Planet. Sci. Lett. 57, 251262.CrossRefGoogle Scholar
Cornette, J.L. (2007). Gauss–Vaníček and Fourier transform spectral analyses of marine diversity. Comput. Sci. Eng. July/August, 6163.CrossRefGoogle Scholar
Da-li, K. & Zi, Z. (2008). A study of the scale height of the thin Galactic disk in the solar neighbourhood. Chin. Astronom. Astrophys. 32, 360368.Google Scholar
Damon, P.E. & Laut, P. (2004). Pattern of strange errors plagues solar activity and terrestrial climate data. Eos 85, 370374.CrossRefGoogle Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Davis, M., Hut, P. & Muller, R.A. (1984). Extinction of species by periodic comet showers. Nature 308, 715717.CrossRefGoogle Scholar
Dias, W.S. & Lépine, J.R.D. (2005). Direct determination of the spiral pattern rotation speed of the Galaxy. Astrophys. J. 629, 825831.CrossRefGoogle Scholar
Dehnen, W. & Binney, J.J. (1998a). Mass models of the Milky Way. Mon. Not. R. Astron. Soc. 294, 429438.CrossRefGoogle Scholar
Dehnen, W. & Binney, J.J. (1998b). Local stellar kinematics from Hipparcos data. Mon. Not. R. Astron. Soc. 298, 387394.CrossRefGoogle Scholar
Ellis, J. & Shramm, D.N. (1995). Could a nearby supernova explosion have caused a mass extinction? Proc. Natl. Acad. Sci. USA 92, 235238.CrossRefGoogle ScholarPubMed
Epstein, S., Buchsbaum, R., Lowenstam, H. & Urey, H.C. (1961). Carbonate–water isotopic temperature scale. Bulletin Geol. Soc. Amer. 62, 417426.CrossRefGoogle Scholar
Erlykin, A.D., Sloan, T. & Wolfendale, A.W. (2009). Solar activity and the mean global temperature. Environ. Res. Lett. 4, 014006.CrossRefGoogle Scholar
Erwin, D.H. (2003). Impact at the Permo–Triassic boundary: a critical evaluation. Astrobiology 3, 6774.CrossRefGoogle ScholarPubMed
Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh.Google Scholar
Friis-Christensen, E. & Lassen, K. (1991). Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698700.CrossRefGoogle ScholarPubMed
Fuchs, B. et al. (2009). The kinematics of late type stars in the solar cylinder studied with SDSS data. Astron. J. 137, 41494159.CrossRefGoogle Scholar
Garwin, R.L. & Charpak, G. (2001). Megawatts and Megatons. Alfred A. Knopf, New York.Google Scholar
Gies, D.R. & Helsel, J.W. (2005). Ice age epochs and the Sun's path through the Galaxy. Astrophys. J. 626, 844848.CrossRefGoogle Scholar
Gillman, M. & Erenler, H. (2007). The galactic cycle of extinction. Int. J. Astrobiol. 7, 1726.CrossRefGoogle Scholar
Glikson, A. (2003). Comment on Abbott & Isley (2002). Earth Planet. Sci. Lett. 215, 425427.CrossRefGoogle Scholar
Glen, W. (ed) (1994). The Mass-extinction Debates: How Science Works in a Crisis. Stanford University Press.CrossRefGoogle Scholar
Goncharov, G.N. & Orlov, V.V. (2003). Global repeating events in the history of the Earth and the motion of the Sun in the Galaxy. Astronom. Rep. 47, 925933.CrossRefGoogle Scholar
Gradstein, F., Ogg, J. & Smith, A. (2005). A Geologic Time Scale 2004. Cambridge University Press.CrossRefGoogle Scholar
Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University Press.CrossRefGoogle Scholar
Gregory, P.C. & Loredo, T.J. (1992). A new method for the detection of a periodic signal of unknown shape and period. Astrophys. J. 398, 146168.CrossRefGoogle Scholar
Grieve, R.A.F., Sharpton, V.L., Goodacre, A.K. & Garvin, J.B. (1985). A perspective on the evidence for periodic cometary impacts on Earth. Earth Planet. Sci. Lett. 76, 19.CrossRefGoogle Scholar
Grieve, R.A.F., Sharpton, V.L., Rupert, J.D. & Goodacre, A.K. (1988). Detecting a periodic signal in the terrestrial cratering record. Lunar and Planetary Science Conference, 18th, Houston, TX, 16–20 March 1987 (A89-10851 01-91), pp. 375382. Cambridge and New York/Houston, TX, Cambridge University Press/Lunar and Planetary Institute.Google Scholar
Hallam, A. (1989). The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos. Tran. R. Soc. Ser. B. 325, 437455.Google Scholar
Hallam, A. (2004). Catastrophes and Lesser Calamities. The Causes of Mass Extinctions. Oxford University Press.CrossRefGoogle Scholar
Harris, A. (2008). What Spaceguard did. Nature 453, 11781179.CrossRefGoogle Scholar
Haye, J.D., Imbrie, J. & Shackleton, N.J. (1976). Variations in the Earth's orbit: Pacemaker of the ice ages. Science 194, 11211132.Google Scholar
Heisler, J. & Tremaine, S. (1989). How dating uncertainties affect the detection of periodicity in extinctions and craters. Icarus 77, 213219.CrossRefGoogle Scholar
Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, Z.A., Jacobsen, S.B. & Boynton, W.V. (1991). Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatan Penninsula, Mexico. Geology 19, 867871.2.3.CO;2>CrossRefGoogle Scholar
Hoyle, F. & Lyttleton, R.A. (1939). The effect of interstellar matter on climatic variation. Proc. Cambridge Philos. Soc. 35, 401415.CrossRefGoogle Scholar
Hut, P. (1984). How stable is an astronomical clock that can trigger mass extinctions on Earth? Nature 311, 638641.CrossRefGoogle Scholar
IPCC, (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.. Cambridge University Press.Google Scholar
Jahnke, K. (2005). On the periodic clustering of cosmic ray exposure ages of iron meteorites, unpublished manuscript, astro-ph/0504055v1.Google Scholar
Jaynes, E.T. (2003). Probability Theory. The Logic of Science. Cambridge University Press.CrossRefGoogle Scholar
Jetsu, L. & Pelt, J. (2000). Spurious periods in the terrestrial impact crater record. Astron. Astrophys. 353, 409418.Google Scholar
Jørgensen, T.S. & Hansen, A.W. (2000). Comments on Svensmark & Friis-Christensen (Svensmark & Friis-Christensen 1997). J. Atmospher. Solar–Terrestr. Phys. 62, 7377.CrossRefGoogle Scholar
Kauffman, S.A. & Johnsen, S. (1991). Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theoret. Biol. 149, 467505.CrossRefGoogle Scholar
Kirkby, J. (2007). Cosmic rays and climate. Surveys Geophys. 28, 333375.CrossRefGoogle Scholar
Kitchell, J.A. & Pena, D. (1984). Periodicity of extinctions in the geologic past: Deterministic versus stochastic explanations. Science 226, 689692.CrossRefGoogle ScholarPubMed
Kristjánsson, J.E., Staple, A., Kristiansen, J. & Kaas, E. (2002). A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett. 29, 221224.CrossRefGoogle Scholar
Laut, P. (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J. Atmospher. Solar–Terrestr. Phys. 65, 801812.CrossRefGoogle Scholar
Lisiecki, L.E. & Raymo, M.E. (2003). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Lin, C.C. & Shu, F.H. (1964). On the spiral structure of disk galaxies. Astrophys. J. 140, 464655.CrossRefGoogle Scholar
Lindblad, B. (1938). On the theory of spiral structure in the nebulae. Zeitschrift für Astrophysik 15, 124136.Google Scholar
Lindegren, L. et al. (2008). The Gaia mission: science, organization and present status. In A Giant Step: from Milli- to Micro-arcsecond Astrometry (Proc. Int. Astronom. Union, IAU Symposium), eds Jin, W.J., Platais, I. & Perryman, M.A.C., vol. 248, pp. 217223. Cambridge University Press.Google Scholar
Leitch, E.M. & Vasisht, G. (1998). Mass extinctions and the sun's encounters with spiral arms. New Astronomy 3, 5156.CrossRefGoogle Scholar
Lieberman, B.S. & Melott, A.L. (2007). Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record, PLoS ONE 8, e759.CrossRefGoogle Scholar
Lieberman, B.S. & Melott, A.L. (2009). Whilst this planet has gone cycling on: what role for periodic astronomical phenomena in large scale patterns in the history of life? Preprint arXiv:0901.3173.Google Scholar
Lockwood, M. (2005). Solar outputs, their variations and their effects on Earth. In The Sun, Solar Analogs and the Climate, eds Haigh, J.D., Lockwood, M. & Giampapa, M.S. Springer, Berlin.Google Scholar
Lockwood, M. & Fröhlich, C. (2007). Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc. Roy. Soc. A. 463, 24472460.CrossRefGoogle Scholar
Lomb, N.R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447462.CrossRefGoogle Scholar
Lutz, T.M. (1985). The magnetic reversal record is not periodic. Nature 317, 404407.CrossRefGoogle Scholar
Marsh, N.D. & Svensmark, H. (2000). Low cloud properties influenced by cosmic rays. Phys. Rev. Lett. 85, 50045007.CrossRefGoogle ScholarPubMed
Matsumoto, M. & Kubotani, H. (1996). A statistical test for correlation between crater formation rate and mass extinctions, Mon. Not. Roy. Astron. Soc. 282, 14071412.CrossRefGoogle Scholar
McCrea, W.H. (1975). Ice ages and the Galaxy. Nature 255, 607609.CrossRefGoogle Scholar
Medvedev, M.V. & Melott, A.L. (2007). Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys. J. 664, 879889.CrossRefGoogle Scholar
Melott, A.L. (2008). Long-term cycles in the history of life: Periodic biodiversity in the Paleobiology database, PLoS ONE 3, e4044.CrossRefGoogle ScholarPubMed
Melott, A.L., Lieberman, B.S., Laird, C.M., Martin, L.D., Medvedev, M.V., Thomas, B.C., Cannizzo, J.K., Gehrels, N. & Jackman, C.H. (2004). Did a gamma-ray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 3, 5561.CrossRefGoogle Scholar
Morrison, D. (2003). Impacts and evolution: Future prospects. Astrobiology 3, 193205.CrossRefGoogle ScholarPubMed
Muller, R.A. & MacDonald, G.J. (2000). Ice ages and astronomical causes. Springer–Praxis, Chichester.Google Scholar
Muller, R.A. & Morris, D.E. (1986). Geomagnetic reversals from impacts on the Earth. Geophys. Res. Lett. 13, 11771180.CrossRefGoogle Scholar
Napier, W.N. (1988). NEOs and impacts: The Galactic connection. Celest. Mech. Dynam. Astron. 69, 5975.CrossRefGoogle Scholar
Napier, W.M. & Clube, S.V.M. (1979). A theory of terrestrial catastrophism. Nature 282, 455459.CrossRefGoogle Scholar
Negi, J.G. & Tiwari, R.K. (1983). Matching long term periodicities of geomagnetic reversals and Galactic motions of the solar system. Geophys. Res. Lett. 10, 713716.CrossRefGoogle Scholar
Newman, M.E.J. (1997). A model of mass extinction. J. Theoret. Biol. 189, 235252.CrossRefGoogle Scholar
Omerbashich, M. (2006). A Gauss–Vaníček spectral analysis of the Sepkoski compendium: no new life cycles. Computing in Science and Engineering. July/August 2007, 46.Google Scholar
Pallé, E. & Butler, C.J. (2002). The proposed connection between clouds and cosmic rays: cloud behaviour during the past 50–120 years. J. Atmospher. Solar–Terrestr. Phys. 64, 327337.CrossRefGoogle Scholar
Pandey, O.P. & Negi, J.G. (1987). Global volcanism, biological mass extinctions and the galactic vertical motion of the solar system. Geophys. J. Royal Astronom. Soc. 89, 857867.CrossRefGoogle Scholar
Patterson, C. & Smith, C. (1987). Is the periodicity of extinctions a taxonomic artefact? Nature 330, 248252.CrossRefGoogle Scholar
Perryman, M.A.C. (2009). Astronomical Applications of Astrometry. Cambridge University Press.Google Scholar
Peters, S.E. & Foote, M. (2002). Determinants of extinction in the fossil record. Nature 416, 420424CrossRefGoogle ScholarPubMed
Petit, J.R. et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Plotnick, R.E. & McKinney, M.L. (1993). Ecosystem organization and extinction dynamics. Palaios 8, 202212.CrossRefGoogle Scholar
Rahmstorf, S. et al. (2004). Cosmic rays, carbon dioxide, and climate. Eos 85, 3841.CrossRefGoogle Scholar
Rampino, M.R. (1998). The Galactic theory of mass extinctions: An update. Celestial Mech. Dynam. Astronom. 69, 4958.CrossRefGoogle Scholar
Rampino, M.R. & Caldeira, K. (1992). Episodes of terrestrial geologic activity during past 260 million years: A quantitative approach. Celestial Mech. Dynam. Astronom. 54, 143159.CrossRefGoogle Scholar
Rampino, M.R. & Stothers, R.B. (1984a) Terrestrial mass extinctions, cometary impacts and the sun's motion perpendicular to the galactic plane. Nature 308, 709712.CrossRefGoogle Scholar
Rampino, M.R. & Stothers, R.B. (1984b). Reply to Stigler (1985). Nature 313, 159160.CrossRefGoogle Scholar
Raup, D.M. (1985a). Magnetic reversals and mass extinctions. Nature 314, 341343.CrossRefGoogle ScholarPubMed
Raup, D.M. (1985b). Rise and fall of periodicity. Nature 317, 384385.CrossRefGoogle Scholar
Raup, D.M. & Sepkoski, J.S. (1984). Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA 81, 801805.CrossRefGoogle ScholarPubMed
Raup, D.M. & Sepkoski, J.S. (1986). Periodic extinctions of families and genera. Science 231, 833836.CrossRefGoogle ScholarPubMed
Raup, D.M. & Sepkoski, J.S. (1988). Testing for periodicity of extinction. Science 241, 9496.CrossRefGoogle ScholarPubMed
Rohde, R.A. & Muller, R.A. (2005). Cycles in fossil diversity. Nature 2005 434, 208210.Google ScholarPubMed
Royer, D.L., Berner, R.A., Montañez, I.P., Tabor, N.J. & Beering, D.J. (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 410.2.0.CO;2>CrossRefGoogle Scholar
Ruderman, M.A. (1974). Possible consequences of nearby supernova explosions for atmospheric ozone and terrestrial life. Science 184, 10791081.CrossRefGoogle ScholarPubMed
Scargle, J.D. (1982). Studies in astronomical time series analysis 2. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835853.CrossRefGoogle Scholar
Schaefer, B.E. (2008). A problem with the clustering of recent measures of the distance to the Large Magellanic Cloud. Astron. J. 135, 112199.CrossRefGoogle Scholar
Scoville, N.Z. & Sanders, D.B. (1986). Observational constraints on the interaction of giant molecular clouds with the solar system. In The Galaxy and the Solar System, ed. Smoluchowski, R., pp. 6982. University of Arizona Press, Tucson.Google Scholar
Sellwood, J.A. & Carlberg, R.G. (1984). Spiral instabilities provoked by accretion and star formation. Astrophys. J. 282, 6174.CrossRefGoogle Scholar
Sepkoski, J. (2002). A Compendium of Fossil Marine Animal Genera (Bull. Am. Paleontology, no. 363), eds Jablonski, D. & Foote, M. Paleontological Research Institution, Ithaca.Google Scholar
Sivia, D.S. (1996). Data analysis: A Bayesian tutorial. Oxford University Press.Google Scholar
Smith, A.B. (2007). Marine diversity through the Phanerozoic: problems and prospects. J. Geolog. Soc. 164, 731745.CrossRefGoogle Scholar
Smith, A.B. & McGowan, A.B. (2005). Cyclicity in the fossil record mirrors rock outcrop area. Biol. Lett. 1, 443445.CrossRefGoogle ScholarPubMed
Sober, E. (2008). Evidence and Evolution. Cambridge University Press.CrossRefGoogle Scholar
Shaviv, N.J. (2003). The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy 8, 3977.CrossRefGoogle Scholar
Shaviv, N.J. (2005). On climate response to changes in the cosmic ray flux and radiative budget. J. Geophys. Res. 110, A08105, 115.Google Scholar
Shaviv, N.J. & Veizer, J. (2003). Celestial driver of Phanerozoic climate? July, 410.Google Scholar
Shoemaker, E.M. (1983). Asteroid and comet bombardment of the Earth. Ann. Rev. Earth Planet. Sci. 11, 461494.CrossRefGoogle Scholar
Shuter, W.L.H. & Klatt, C. (1986). Phase modulation of the Sun's z oscillations. Astrophys. J. 301, 471477.CrossRefGoogle Scholar
Sloan, T. & Wolfendale, A.W. (2008). Testing the proposed causal link between cosmic rays and cloud cover. Environ. Res. Lett. 3, 16.CrossRefGoogle Scholar
Stanley, S.M. (1990). Delayed recovery and the spacing of major extinctions. Paleobiology 16, 401414.CrossRefGoogle Scholar
Stellingwerf, R.F. (1978). Period determination using phase dispersion minimization. Astrophys. J. 224, 953960.CrossRefGoogle Scholar
Stigler, S.M. (1985). Terrestrial mass extinctions and galactic plane crossings. Nature 313, 159.CrossRefGoogle Scholar
Stigler, S.M. & Wagner, M.J. (1987). A substantial bias in nonparametric tests for periodicity in geophysical data. Science 238, 940945.CrossRefGoogle ScholarPubMed
Stigler, S.M. & Wagner, M.J. (1988). Reply to Raup & Sepkoski (Raup & Sepkoski 1988). Science 241, 9699.CrossRefGoogle Scholar
Stothers, R. (1979). Solar activity during classical antiquity. Astron. Astrophys. 77, 121127.Google Scholar
Stothers, R. (1986). Periodicity of the Earth's magnetic reversals. Nature 322, 444446.CrossRefGoogle Scholar
Sturrock, P.A. (2008). A Bayesian approach to power spectrum significance estimation, with application to solar neutrino data. Preprint arXiv:0809.0276v1Google Scholar
Svensmark, H. (2006). Imprint of Galactic dynamics on Earth's climate. Astron. Nachr. 9, 866870.CrossRefGoogle Scholar
Svensmark, H. & Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage – a missing link in solar–climate relationships. J. Atmosph. Sol.–Terrestr. Phys. 59, 12251232.CrossRefGoogle Scholar
Tanaka, H.K.M. (2006). Possible terrestrial effects of a nearby supernova explosion – Atmosphere's response. J. Atmosph. Sol.–Terrestr. Phys. 68, 13961400.CrossRefGoogle Scholar
Teterev, A.V., Nemtchinov, I.V. & Rudak, L.V. (2004). Impacts of large planetesimals on the early Earth. Solar System Research 38, 4352.CrossRefGoogle Scholar
Thomas, B.C. et al. (2005). Gamma-ray bursts and the Earth: Exploration of atmospheric, biological, climatic, and biogeochemical effects. Astrophys. J. 634, 509533.CrossRefGoogle Scholar
Thomson, K.S. (1976). Explanation of large sale extinctions of lower vertebrates. Nature 261, 578580.CrossRefGoogle Scholar
Toon, O.B., Turco, R.P. & Covey, C. (1997). Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 35, 4178.CrossRefGoogle Scholar
Torbett, M.V. (1989). Solar system and Galactic influences on the stability of the Earth. Palaeogeogr. Palaeoclim. Palaeoecol. 75, 333.CrossRefGoogle Scholar
Torbett, M.V. & Smoluchowski, R. (1984). Orbital stability of the unseen solar companion linked to periodic extinction events. Nature 311, 641642.CrossRefGoogle Scholar
Turon, C., O'Flaherty, K.S. & Perryman, M.A.C. (eds). (2005). The Three-Dimensional Universe with Gaia, ESA, SP–576, Scholar
Vallée, J.P. (2008). New velocimetry and revised cartography of the spiral arms in the Milky Way – A consistent symbiosis. Astron. J. 135, 13011310.CrossRefGoogle Scholar
Veizer, J. et al. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geolog. 161, 5899.CrossRefGoogle Scholar
Wickramasinghe, J.T. & Napier, W.M. (2008). Impact cratering and the Oort cloud. Mon. Not. Roy. Astron. Soc. 387, 153157.CrossRefGoogle Scholar
Wielen, R. (1977). The diffusion of stellar orbits derived from the observed age-dependence of the velocity dispersion. Astron. Astrophys. 60, 263275.Google Scholar
White, R.V. & Saunder, A.D. (2005). Volcanism, impact and mass extinctions: incredible or credible coincidences. Lithos 79, 299316.CrossRefGoogle Scholar
Whitmire, D.P. & Jackson, A.A. (1984). Are periodic mass extinctions driven by a distant solar companion? Nature 308, 713715.CrossRefGoogle Scholar
Wignall, P.B. (2001). Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 133.CrossRefGoogle Scholar