Hostname: page-component-797576ffbb-pxgks Total loading time: 0 Render date: 2023-12-02T12:48:07.363Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

Published online by Cambridge University Press:  04 December 2008

Marcelo I. Guzman
School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA e-mail:
Scot T. Martin
School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA e-mail:


The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10−3+[OAA])−1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k−2)=11.74–4956/T, where k−2 is in units of s−1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

Research Article
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aoshima, M. (2007). Appl. Microbiol. Biotechnol. 75, 249255.Google Scholar
Cockell, C.S. (2000). Planet. Space Sci. 48, 203214.Google Scholar
Covey, W.D. & Leussing, D.L. (1974). J. Am. Chem. Soc. 96, 38603866.Google Scholar
Emly, E. & Leussing, D.L. (1981). J. Am. Chem. Soc. 103, 628634.Google Scholar
Gelles, E. (1956). J. Chem. Soc., 47364739.Google Scholar
Gelles, E. & Hay, R.W. (1958) J. Chem. Soc., 36733683.Google Scholar
Gelles, E. & Salama, A. (1958a). J. Chem. Soc., 36833688.Google Scholar
Gelles, E. & Salama, A. (1958b). J. Chem. Soc., 36893693.Google Scholar
Guthrie, J.P. (2002). Bioorganic Chem. 30, 3252.Google Scholar
Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995). Chem. Rev. 95, 6996.Google Scholar
Holland, H.D. (1984). The Chemical Evolution of the Atmosphere and Oceans, pp. 105107. Princeton University Press, Princeton, NJ.Google Scholar
Kasting, J.F. (1993). Science 259, 920926.Google Scholar
Kishore, N., Tewari, Y.B. & Goldberg, R.N. (1998). J. Chem. Thermodynam. 30, 13731384.Google Scholar
Kokesh, F.C. (1976). J. Org. Chem. 41, 35933599.Google Scholar
Kuhn, H.J., Braslavsky, S.E. & Schmidt, R. (2004). Pure Appl. Chem. 76, 21052146.Google Scholar
Lide, D.R. (2008). Solubility of carbon dioxide in water at various temperatures and pressures. In CRC Handbook of Chemistry and Physics, 88th edn, pp. 884. CRC Press/Taylor and Francis, Boca Raton, Fl, USA.Google Scholar
Miller, S.L. & Smith-Magowan, D. (1990). J. Phys. Chem. Ref. Data 19, 10491073.Google Scholar
Morowitz, H.J., Kostelnik, J.D., Yang, J. & Cody, G.D. (2000) Proc. Natl Acad. Sci. USA 97, 77047708.Google Scholar
Morse, J.W. & Mackenzie, F.T. (1998). Aquat. Geochem. 4, 301319.Google Scholar
Orgel, L.E. (2000). Proc. Natl Acad. Sci. USA 97, 12 50312 507.Google Scholar
Pedersen, K.J. (1952). Acta Chem. Scand. 6, 285303.Google Scholar
Pogson, C.I. & Wolfe, R.G. (1972). Biochem. Biophys. Res. Commun. 46, 1048.Google Scholar
Ross, D.S. (2007). Orig. Life Evol. Biosph. 37, 6165.Google Scholar
Schuster, P. (2000). PNAS, 97, pp. 76787680.Google Scholar
Smith, E. & Morowitz, H.J. (2004). Proc. Natl Acad. Sci. USA 101, 13 16813 173.Google Scholar
Speck, J.F. (1949). J. Biolog. Chem. 178, 315324.Google Scholar
Tarasov, V.G., Gebruk, A.V., Mironov, A.N. & Moskalev, L.I. (2005). Chem. Geol. 224, 539.Google Scholar
Thauer, R.K. (2007). Science 318, 17321733.Google Scholar
Tsai, S.J. & Leussing, D.L. (1987). Inorg. Chem. 26, 26202629.Google Scholar
Wachtershauser, G. (1990). Proc. Natl Acad. Sci. USA 87, 200204.Google Scholar
Wachtershauser, G. (1993). Pure Appl. Chem. 65, 13431348.Google Scholar
Wood, H.G., Davis, J.J. & Lochmuller, H. (1966). J. Biol. Chem. 241, 56925704.Google Scholar
Zhang, X.V., Ellery, S.P., Friend, C.M., Holland, H.D., Michel, F.M., Schoonen, M.A.A. & Martin, S.T. (2007). J. Photochem. Photobiol. A: Chem. 185, 301311.Google Scholar
Zhang, X.V. & Martin, S.T. (2006). J. Am. Chem. Soc. 128, 16 03216 033.Google Scholar
Zhang, X.V., Martin, S.T., Friend, C.M., Schoonen, M.A.A. & Holland, H.D. (2004). J. Am. Chem. Soc. 126, 11 24711 253.Google Scholar