Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T13:09:16.927Z Has data issue: false hasContentIssue false

Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes

Published online by Cambridge University Press:  27 November 2012

Jack T. O'Malley-James*
School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK
Jane S. Greaves
School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK
John A. Raven
Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, UK
Charles S. Cockell
UK Centre for Astrobiology, School of Physics and Astronomy, James Clerk Maxwell Building, The King's Buildings, University of Edinburgh, Edinburgh, UK


The future biosphere on Earth (as with its past) will be made up predominantly of unicellular micro-organisms. Unicellular life was probably present for at least 2.5 Gyr before multicellular life appeared and will likely be the only form of life capable of surviving on the planet in the far future, when the ageing Sun causes environmental conditions to become more hostile to more complex forms of life. Therefore, it is statistically more likely that habitable Earth-like exoplanets we discover will be at a stage in their habitable lifetime more conducive to supporting unicellular, rather than multicellular life. The end stage of habitability on Earth is the focus of this work. A simple, latitude-based climate model incorporating eccentricity and obliquity variations is used as a guide to the temperature evolution of the Earth over the next 3 Gyr. This allows inferences to be made about potential refuges for life, particularly in mountains and cold-trap (ice) caves and what forms of life could live in these environments. Results suggest that in high latitude regions, unicellular life could persist for up to 2.8 Gyr from present. This begins to answer the question of how the habitability of Earth will evolve at local scales alongside the Sun's main sequence evolution and, by extension, how the habitability of Earth-like planets would evolve over time with their own host stars.

Research Article
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Allan, R.P. (2012). The role of water vapour in Earth's energy flows. Surv. Geophys. 33, 557564.Google Scholar
Aráujo, M.B., Thuiller, W. & Pearson, R.G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 17121728.Google Scholar
Bach, W. & Edwards, K.J. (2003). Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 38713887.Google Scholar
Baker, E.T. & German, C.R. (2004). On the global distribution of hydrothermal vent fields. Geophys. Monogr. Ser. 148, 245266.Google Scholar
Bar-Even, A., Noor, E., Lewis, N.E. & Milo, R. (2010). Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. U.S.A. 107, 88898894.Google Scholar
Bar-Even, A., Noor, E. & Mil, R. (2012). A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 23252342.Google Scholar
Barnes, R., Mullins, K., Goldblatt, C., Meadows, V.S., Kasting, J.F. & Heller, R. (2012). Tidal Venuses: triggering a climate catastrophe via tidal heating. Preprint, arXiv:1203.5104v1.Google Scholar
Beatty, J.T., Oevrmann, J., Lince, M.T., Manske, A.K., Lang, A.S., Blankenship, R.E., Van Dover, C.L., Martinson, T.A. & Plumley, F.G. (2005). An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. U.S.A. 102, 93069310.CrossRefGoogle ScholarPubMed
Beaty, D. et al. (2006). Unpublished white paper, 76 p, posted June 2006 by the Mars Exploration Program Analysis Group (MEPAG) at Scholar
Bell, E.M. (2012). Life at Extremes: Environments, Organisms and Strategies for Survival. CABI, Oxfordshire, UK.Google Scholar
Birmingham, B.C. & Colman, B. (1979). Measurement of carbon dioxide compensation points of freshwater algae. Plant Physiol. 64, 892895.CrossRefGoogle ScholarPubMed
Boer, G.J., Hamilton, K. & Zhu, W. (2004). Climate sensitivity and climate change under strong forcing. Climate Dyn. 24, 685700.Google Scholar
Bohlen, S.R. (1987). Pressure-temperature-time paths and a tectonic model for the evolution of granulites. J. Geol. 95, 617632.CrossRefGoogle Scholar
Bonfils, X. et al. (2011). The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample. Preprint, arXiv:1111.5019.Google Scholar
Bounama, C., Franck, S. & von Bloh, W. (2001). The fate of Earth's ocean. Hydrol. Earth Syst. Sci. 5, 569575.Google Scholar
Bowers, R.M., Lauber, C.L., Wiedinmyer, C., Hamady, M., Hallar, A.G., Fall, R., Knight, R. & Fierer, N. (2009). Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol. 75, 51215130.Google Scholar
Butterfield, N.J. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Paleobiology 26, 386404.Google Scholar
Caldeira, C. & Kasting, J.F. (1992). The life span of the biosphere revisited. Nature 360, 721723.Google Scholar
Canfield, D.E. (2005). The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 136.Google Scholar
Catanzarite, J. & Shao, M. (2011). The occurrence rate of Earth-analog planets orbiting sun-like stars. Astrophys. J. 738, 151161.Google Scholar
Chivian, D. et al. (2008). Environmental genomics reveals a single-species ecosystem deep within earth. Science 322, 275278.Google Scholar
Clarke, A. & Rothery, P. (2008). Scaling of body temperature in mammals and birds. Funct. Ecol. 22, 5867.Google Scholar
Cockell, C.S. (2003). Impossible Extinction: Natural Catastrophes and the Supremacy of the Microbial World. Cambridge University Press, Cambridge, UK.Google Scholar
Dartnell, L. (2011). Biological constraints on habitability. Astron. Geophys. 52, 1.251.28.Google Scholar
DasSarma, S. & DasSarma, P. (2001). Halophiles. In Encyclopedia of Life Sciences, John Wiley & Sons, Ltd, Chichester.Google Scholar
Dillon, M.E., Wang, G. & Huey, R.B. (2010). Global metabolic impacts of recent climate warming. Nature 467, 704707.CrossRefGoogle ScholarPubMed
Edwards, K.J., Becker, K. & Colwell, F. (2012). The deep, dark energy biosphere: intraterrestrial life on earth. Annu. Rev. Earth Planet. Sci. 40, 551568.Google Scholar
Engel, A.S., Porter, M.L., Kinkle, B.K. & Kane, T.C. (2001). Ecological assessment and geological significance of microbial communities from cesspool cave, Virginia. Geomicrobiol. J. 18, 259274.Google Scholar
Falkowski, P.G., Katz, M.E., Milligan, A.J., Fennel, K., Cramer, B.S., Aubrey, M.P., Berner, R.A., Novacek, M.J. & Zapol, W.M. (2005). The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 22022204.Google Scholar
Ferrera, I. & Reysenbach, A-L. (2007). Thermophiles. In Encyclopedia of Life Sciences, John Wiley & Sons, Ltd, Chichester.Google Scholar
Feulner, G. (2012). The faint young Sun problem. Rev. Geophys. 50: RG2006.Google Scholar
Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237240.Google Scholar
Goldblatt, C. & Watson, J.A. (2012). The Runaway Greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Preprint, arXiv:1201.1593v1.Google Scholar
Gough, D.O. (1981). Solar interior structure and luminosity variations. Solar Phys. 74, 2134.Google Scholar
Howarth, F.G. (1983). Ecology of cave arthropods. Annu. Rev. Etomol. 28, 365–289.CrossRefGoogle Scholar
Irwin, L.N. & Schulze-Makuch, D. (2011). Cosmic Biology: How Life Could Evolve on Other Worlds? Edited by John Mason. Springer Science + Business Media, New York, NY, USA.Google Scholar
Kaltenegger, L., Traub, W.A. & Jucks, K.W. (2007). Evolution of an Earth-like planet. Astrophys. J. 658, 598616.CrossRefGoogle Scholar
Kasting, J.F. (1988). Runaway and moist greenhouse atmospheres and the evolution of earth and Venus. Icarus 74, 472494.Google Scholar
Kasting, J.F. & Grinspoon, D.H. (1991). The faint young sun problem. In The Sun in Time, pp. 447462. University of Arizona Press, Tuscon, AZ.Google Scholar
Kemp, T.S. (2006). The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zool. J. Linnean Soc. 147, 473488.CrossRefGoogle Scholar
Kieft, T.L. et al. (2005). Geochemically generated, energy-rich substrates and indigenous microorganisms in deep, ancient groundwater. Geomicrobiol. J. 22, 325335.CrossRefGoogle Scholar
Kimura, H., Mori, K., Nashimoto, H., Hattori, S., Yamada, K., Koba, K., Yoshida, N. & Kato, K. (2010). Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool. Microbes Environ. 12, 480489.Google Scholar
Landis, G.A. (2001). Martian water: are there extant halobacteria on mars? Astrobiology 1, 161164.Google Scholar
Laskar, J. & Gastineau, M. (2009). Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459, 817819.CrossRefGoogle ScholarPubMed
Laskar, J., Joutel, F. & Robutel, P. (1993). Stabilization of the Earth's obliquity by the Moon. Nature 361, 615617.Google Scholar
Laskar, J., Correia, A.C.M., Gastineau, M., Joutel, F., Levrard, B. & Robutel, P. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343364.Google Scholar
Leutscher, M., Jeannin, P.-Y. & Haeberli, W. (2005). Ice caves as an indicator of winter climate evolution: a case study from the Jura Mountains. Holocene 15, 982993.CrossRefGoogle Scholar
Levenson, B.P. (2011). Planet temperatures with surface cooling parameterized. Adv. Space. Res. 47, 20442048.CrossRefGoogle Scholar
Lin, L-H., Slater, G.F., Lollar, B.S., Lacrampe-Couloume, G. & Onstott, T.C. (2005). The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69, 893903.Google Scholar
Lin, L-H. et al. (2006). Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479482.Google Scholar
Lineweaver, C.H. (2001). An estimate of the age distribution of terrestrial planets in the universe: quantifying metallicity as a selection effect. Icarus 151, 307313.Google Scholar
Lissauer, J.J., Barnes, J.W. & Chambers, J.E. (2012). Obliquity variations of a moonless Earth. Icarus 217, 7787.Google Scholar
Lorenz, R.D., Lunine, J.I., Withers, P.G. & McKay, C.P. (2001). Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415418.Google Scholar
Lynch, R.C., King, A.J., Farías, M.E., Sowell, P., Vitry, C. & Schmidt, S.K. (2012). The potential for microbial life in the highest elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J. Geophys. Res. 117, G02028.Google Scholar
Maberly, S.C. (1990). Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Physcol. 26, 439449.Google Scholar
Maberly, S.C. (1996). Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw. Biol. 35, 579598.Google Scholar
Margot, J.L., Campbell, D.B., Jurgens, R.F. & Slade, M.A. (1999). Topography of the lunar poles from radar interferometry: a survey of cold trap locations. Science 284, 16581660.Google Scholar
McLean, D.M. (1991). A climate change mammalian population collapse mechanism. In Energy and Environment, eds. Kainlauri, E., Johansson, A., Kurki-Suonio, I. & Geshwiler, M., p. 93100. ASHRAE, Atlanta, Georgia.Google Scholar
McGuffie, K. & Henderson-Sellers, A. (2005). A Climate Modelling Primer, 3rd edn. John Wiley & Sons Ltd., West Sussex, England.Google Scholar
Meadows, A.J. (2007). The Future of the Universe. Springer-Verlag London Limited, London.Google Scholar
Mesbah, N.M. & Wiegel, J. (2012). Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophile. Appl. Environ. Microbiol. 78, 40744082.Google Scholar
McCollom, T.M. (1999). Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 104, 3072930742.Google Scholar
Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P. & Friend, C.R.L. (1996). Evidence for life on earth before 3800 million years ago. Nature 384, 5559.Google Scholar
Myhre, G., Highwood, E.J., Shine, K.P. & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 27152718.Google Scholar
Néron de Surgy, O. & Laskar, J. (1997). On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975989.Google Scholar
Neukum, G. et al. (2004). Recent and episodic volcanic and glacial activity on mars revealed by the high resolution stereo camera. Nature 432, 971979.Google Scholar
Nixdorf, B., Krumbeck, H., Jander, J. & Beulker, C. (2003). Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes. Acta Oecol. 24, S281S288.Google Scholar
Ohata, T., Furukawa, T. & Osada, K. (1994). Glacioclimatological study of perennial ice in the Fuji Ice Cave, Japan. Part 2. interannual variation and relation to climate. Arctic Alpine Res. 26, 238244.Google Scholar
Orcutt, B.N., Sylvan, J.B., Knab, N.J. & Edwards, K.J. (2011). Microbial ecology of the dark ocean above, at and below the Seafloor. Microbiol. Mol. Biol. Rev. 75, 361422.Google Scholar
Oren, A. (2009). Microbial diversity. In Encyclopedia of Life Sciences (ELS). John Wiley & Sons Ltd, Chichester.Google Scholar
Paillard, A.A. (2010). Climate and the orbital parameters of the Earth. C. R. Geosci. 342, 273285.Google Scholar
Parnell, J., Boyce, A.J. & Blamey, N.J.F. (2010). Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. Int. J. Astrobiol. 9, 193200.Google Scholar
Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A. & Freedman, F. (2000). Greenhouse Warming by CH4 in the Atmosphere of Early Earth. Geophys. Res. 105, 1198111990.Google Scholar
Pedersen, K. (2000). Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185, 916.Google Scholar
Price, C. (2009). Thunderstorms Lightning and Climate Change. In: eds. Betz, H.D., Schumann, U., Laroche, P.Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research. vol. 1. Dordrecht, The Netherlands, Springer, pp. 521535.Google Scholar
Price, C. & Asfur, M. (2006a). Can lightning observations be used as an indicator of upper tropospheric water vapor variability? Bull. Am. Meteor. Soc. 87, 291298.Google Scholar
Rákóczi, F. & Iványi, S. (1999). Water vapour and greenhouse effect. Geofizika 16–17, 6572.Google Scholar
Raven, J.A. & Larkum, A.W.S. (2007). Are there ecological implications from the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations? Photosyn. Res. 94, 3142.Google Scholar
Reith, F. (2011). Life in the deep subsurface. Geology 39, 287288.Google Scholar
Ribas, I., Guinan, E.F., Gúdel, M. & Audard, M. (2005). Evolution of solar activity over time and effects on planetary atmospheres. I. high-energy irradiances (1–1700 A). Astrophys. J. 622, 680694.Google Scholar
Rosing, M.T. (1999). C-13-depleted carbon microparticles in >3700-Ma seafloor sedimentary rocks from west Greenland. Science 283, 674676.Google Scholar
Rosing, M.T., Bird, D.K., Sleep, N.H. & Bjerrum, C.J. (2010). No climate paradox under the faint early Sun. Nature 464, 744747.Google Scholar
Rothschild, L.J. & Mancinelli, R.L. (2001). Life in extreme environments. Nature 409, 10921101.Google Scholar
Sato, M. & Fukunishi, H. (2005). New evidence for a link between lightning activity and tropical upper cloud coverage. Geophys. Res. Lett. 32, L12807.Google Scholar
Schidlowski, M. (1988). A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313318.Google Scholar
Schneider, J. (2010). The Extrasolar Planets Encyclopaedia. Available online at Scholar
Scott, B.J. (1994). Cyclic activity in the crater lakes of Waimangu hydrothermal system, New Zealand. Geothermics 23, 555572.Google Scholar
Seager, S., Schrenk, M. & Bains, W. (2012). An astrophysical view of earth-based metabolic biosignature gases. Astrobiology 12, 6182.CrossRefGoogle ScholarPubMed
Sekercioglu, C.H., Schneider, S.H., Fay, J.P. & Loarie, S.R. (2007). Climate change, elevational range shifts, and bird extinction. Conserv. Biol. 22, 140150.CrossRefGoogle Scholar
Sekiguchi, M., Hayakawa, M., Nickolaenko, A.P. & Hobara, Y. (2006). Evidence on a link between the intensity of Schumann resonance and global surface temperature. Ann. Geophys. 24, 18091817.Google Scholar
Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G. & Drossart, P. (2010). Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605608.Google Scholar
Spiegel, D.S., Raymond, S.N., Dressing, C.D., Scharf, C.A. & Mitchell, J.L. (2010). Generalized milankovitch cycles and long-term climatic habitability. Astrophys. J. 721, 13081318.Google Scholar
Strother, P.K., Battison, L., Brasier, M.D. & Wellman, C.H. (2011). Earth's earliest non-marine eukaryotes. Nature 473, 505509.Google Scholar
Tarter, J.C. et al. (2007). A reappraisal of the habitability of planets around M Dwarf stars. Astrobiology 7, 3065.Google Scholar
Thiermann, F., Akoumianaki, I., Hughes, J.A. & Giere, O. (1997). Benthic fauna of a shallow water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Marine Biol. 128, 149159.Google Scholar
Tie, X., Zhang, R., Brasseur, G. & Lei, W. (2002). Global NOx production by lightning. J. Atmos. Chem 43, 6174.Google Scholar
Tomasella, L., Marzari, F. & Vanzani, V. (1996). Evolution of the Earth obliquity after the tidal expansion of the Moon orbit. Planet. Space Sci. 44, 427430.Google Scholar
Tuttle, M.D. & Stevenson, D.E. (1977) Variation in the cave environment and its biological implications. In National Cave Management Symp. Proc., 1977, Adobe Press, Albuquerque, NM, pp. 108121.Google Scholar
Valsami-Jones, E., Baltatzis, E., Bailey, E.H., Boyce, A.J., Alexander, J.L., Magganas, A., Anderson, L., Waldron, S. & Ragnarsdottir, K.V. (2005). The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc. J. Volcanol. Geotherm. Res. 148, 130151.CrossRefGoogle Scholar
Vásquez, M., Pallé, E. & Montañés Rodríguez, P. (2010). The Earth as a Distant Planet, p. 10013. Springer Science + Business Media, New York, NY.CrossRefGoogle Scholar
Walker, J.C.G. (1991). Feedback processes in the biogeochemical cycles of Carbon. In Scientists on Gaia, eds Schneider, S.H. & Boston, P.J., pp. 183190. The MIT Press, Cambridge, Massachusetts.Google Scholar
Ward, P.D. & Brownlee, D. (2002). The Life and Death of Planet Earth. Times Books, New York.Google Scholar
Welsh, W.F. et al. (2012) Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481, 475479.Google Scholar
Williams, D.M. & Kasting, J.F. (1997). Habitable Planets with High Obliquities. Icarus 129, 254267.Google Scholar
Williams, E., Mushtak, V., Rosenfeld, D., Goodman, S. & Boccippio, D. (2005). Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res. 76, 288306.Google Scholar
Williams, K.E., McKay, C.P., Toon, O.B. & Head, J.W. (2010). Do ice caves exist on Mars? Icarus 209, 358368.Google Scholar
Womack, A.M., Bohannan, B.J.M. & Green, J.L. (2010). Biodiversity and biogeography of the atmosphere. Phil. Trans. R. Soc. B 365, 36453653.Google Scholar
Wood, C.A. (1984). Calderas: a planetary perspective. J. Geophys. Res. 89, 83918406.Google Scholar
Yoder, J.A., Chambers, M.J., Tank, J.L. & Keeney, G.D. (2009). High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoctiale. Journal of Insect Science 9, Article 68.CrossRefGoogle ScholarPubMed