Skip to main content Accessibility help
×
×
Home

Evidence for life in the isotopic analysis of surface sulphates in the Haughton impact structure, and potential application on Mars

  • John Parnell (a1), Adrian J. Boyce (a2), Gordon R. Osinski (a3), Matthew R.M. Izawa (a3), Neil Banerjee (a3), Roberta Flemming (a3) and Pascal Lee (a4)...
Abstract

The analysis of sulphur isotopic compositions in three sets of surface sulphate samples from the soil zone in the Haughton impact structure shows that they are distinct. They include surface gypsum crusts remobilized from the pre-impact gypsum bedrock (mean δ34S +31‰), efflorescent copiapite and fibroferrite associated with hydrothermal marcasite (mean δ34S −37‰), and gypsum-iron oxide crusts representing weathering of pyritic crater-fill sediments (mean δ34S +7‰). Their different compositions reflect different histories of sulphur cycling. Two of the three sulphates have isotopically light (low δ34S) compositions compared with the gypsum bedrock (mean δ34S +31‰), reflecting derivation by weathering of sulphides (three sets of pyrite/marcasite samples with mean δ34S of −41, −20 and −8‰), which had in turn been precipitated by microbial sulphate reduction. Thus, even in the absence of the parent sulphides due to surface oxidation, evidence of life would be preserved. This indicates that on Mars, where surface oxidation may rule out sampling of sulphides during robotic exploration, but where sulphates are widespread, sulphur isotope analysis is a valuable tool that could be sensitive to any near-surface microbial activity. Other causes of sulphur isotopic fractionation on the surface of Mars are feasible, but any anomalous fractionation would indicate the desirability of further analysis.

Copyright
Corresponding author
e-mail: J.Parnell@abdn.ac.uk
References
Hide All
Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Sulfate minerals and organic compounds on Mars. Geology 34, 357360.
Barlow, N.G. (1990). Constraints on early events in Martian history as derived from the cratering record. J. Geophys. Res. 95, 1419114203.
Brunner, B. & Bernasconi, S.M. (2005). A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim. Cosmochim. Acta 69, 47594771.
Burns, R.G. & Fisher, D.S. (1990). Iron–sulfur mineralogy on Mars: magmatic evolution and chemical weathering products. J. Geophys. Res. 95, B14415B14421.
Burns, R.G. & Fisher, D.S. (1993). Rates of oxidative weathering on the surface of Mars. J. Geophys. Res. 98, E3365E3372.
Canfield, D.E. (2004). The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839861.
Chevrier, V., Rochette, P., Mathé, P.-E. & Grauby, O. (2004). Weathering of iron-rich phases in simulated Martian atmospheres. Geology 32, 10331036.
Christensen, L.E., Brunner, B., Truong, K.N., Mielke, R.E., Webster, C.R. & Coleman, M. (2007). Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO2. Anal. Chem. 79, 92619268.
Cid, A. & Casanova, I. (2001). Sulphates in Martian soils: a clear exobiological target. In Proceedings of the First European Workshop on Exo-Astrbiology (European Space Agency Special Publication 496), pp. 201202. European Space Agency, Noordwijk.
Coleman, M.L. & Moore, M.P. (1978). Direct reduction of sulphates to sulphur dioxide for isotopic analysis. Anal. Chem. 28, 199260.
Crucian, B., Lee, P., Stowe, R., Jones, J., Effenhauser, R., Widen, R. & Sams, C. (2007). Immune system changes during simulated planetary exploration on Devon Island, High Arctic. BMC Immunology 8, 7. doi: 10.1186/1471-2172-8-7.
Detmers, J., Bruchert, V., Habicht, K. & Kuever, J. (2001). Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl. Environ. Microbiol. 67, 888894.
Farquhar, J., Kim, S.-T. & Masterson, A. (2007). Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth Planet. Sci. Lett. 264, 18.
Farquhar, J., Savarino, J., Jackson, T.L. & Thiemens, M.H. (2000). Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites. Nature 404, 5052.
Franz, H.B., Mahaffy, P.R. & Farquhar, J. (2007). Preliminary estimate of sulfur isotope ratio precision expected with the sample analysis at Mars (SAM) instrument suite of the 2009 Mars Science Laboratory. In Lunar and Planetary Science Conference XXXVIII, abstract 1874.
Franz, H.B., Mahaffy, P.R., Kasprzak, W., Lyness, E. & Raaen, E. (2011). Measuring sulfur isotope ratios from solid samples with the Sample Analysis at Mars instrument and the effects of dead time corrections. In 42nd Lunar and Planetary Science Conference, abstract 2800.
Furgale, P., Barfoot, T. & Ghafoor, N. (2010). Rover-based surface and subsurface modelling for planetary exploration. Field and Service Robotics 7. Springer Tracts Adv. Robot. 62, 499508.
Gaillard, F. & Scaillet, B. (2009). The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 3443.
Gendrin, A. et al. (2005). Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307, 15871591.
Glynn, S., Mills, R.A., Palmer, M.R., Pancost, R.D., Severmann, S. & Boyce, A.J. (2006). The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides. Earth Planet. Sci. Lett. 244, 170185.
Greenwood, J.P., Mojzsis, S.J. & Coath, C.D. (2000a). Sulfur isotopic compositions of individual sulfides in Martian meteorites ALH84001 and Nakhla: implications for crust-regolith exchange on Mars. Earth Planet. Sci. Lett. 184, 2335.
Greenwood, J.P., Riciputi, L.R. & McSween, H.Y. (1997). Sulfide isotopic compositions in shergottites and ALH84001, and possible implications for life on Mars. Geochim. Cosmochim. Acta 61, 44494453.
Greenwood, J.P., Riciputi, L.R., McSween, H.Y. & Taylor, L.A. (2000b). Modified sulpfur isotopic compositions of sulfides in the nakhlites and Chassigny. Geochim. Cosmochim. Acta 64, 11211131.
Habicht, K.S. & Canfield, D.E. (1997). Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim. Acta 24, 53515361.
Hickey, L.J., Johnson, K.R. & Dawson, M.R. (1988). The stratigraphy, sedimentology, and fossils of the Haughton formation: a post-impact crater-fill, Devon Island, N.W.T., Canada. Meteoritics 23, 221231.
Johnson, S.S., Mischna, M.A., Grove, T.L. & Zuber, M.T. (2008). Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. 113, doi: 10.1029/2007JE002962.
Johnston, D.T., Farquhar, J. & Canfield, D.E. (2007). Sulfur isotope insights into microbial sulphate reduction: when microbes meet models. Geochim. Cosmochim. Acta 71, 39293947.
Johnston, D.T., Farquhar, J., Habicht, K.S. & Canfield, D.E. (2008). Sulphur isotopes and the search for life: strategies for identifying sulphur metabolisms in the rock record and beyond. Geobiology 6, 425435.
Kaplan, I.R. & Hulston, J.R. (1966). The isotopic abundance and content of sulfur in meteorites. Geochim. Cosmochim. Acta 30, 479496.
King, P.L., Lescinsky, D.T. & Nesbitt, H.W. (2004). The composition and evolution of primordial solutions on Mars, with applications to other planetary bodies. Geochim. Cosmochim. Acta 68, 49935008.
King, P.L. & McLennan, S.M. (2010). Sulfur on Mars. Elements 6, 107112.
Kounaves, S.P. et al. (2010). Confirmation of soluble sulfate at the Phoenix landing site: implications for Martian geochemistry and habitability. In 41st Lunar and Planetary Science Conference, abstract 2199.
Lane, M.D., Bishop, J.L., Dyar, M.D., King, P.L., Parente, M. & Hyde, B.C. (2008). Mineralogy of the Paso Robles soils on Mars. Am. Mineral. 93, 728739.
Lefticariu, L., Pratt, L.M. & Ripley, E.M. (2006). Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen perozide at temperatures from 4 to 150°C. Geochim. Cosmochim. Acta 70, 48894905.
Lim, D.S.S. & Douglas, M.S.V. (2003). Limnological characteristics of 22 lakes and ponds in the Haughton Crater region of Devon Island, Nunavut, Canadian High Arctic. Arctic, Antarctic Alpine Res. 35, 509519.
Lorand, J.-P., Chevrier, V. & Sautter, V. (2005). Sulfide mineralogy and redox conditions in some shergottites. Meteorit. Planet. Sci.(USA) 40, 12571272.
Machel, H.G. (2001). Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sediment. Geol. 140, 143175.
Marnocha, C.L., Chevrier, V.F. & Ivey, D.M. (2010). Sulfate-reducing bacteria as a model for life in the martian subsurface. In 41st Lunar and Planetary Science Conference, abstract 1536.
McLennan, S.M.et al. (2005). Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95121.
Newsom, H.E. et al. (2009). Simulated rover field test at the Haughton-Mars project impact crater field station. In 40th Lunar and Planetary Science Conference, abstract 1446.
Osinski, G.R. & Lee, P. (2005). Intra-crater sedimentary deposits at the Haughton impact structure, Devon Island, Canadian High Arctic. Meteorit. Planet. Sci. 40, 18871899.
Osinski, G.R., Lee, P., Parnell, J., Spray, J.G. & Baron, M. (2005a). A case study of impact-induced hydrothermal activity: the Haughton impact structure, Devon Island, Canadian High Arctic. Meteorit. Planet. Sci. 40, 18591877.
Osinski, G.R., Lee, P., Spray, J.G., Parnell, J., Lim, D.S.S., Bunch, T.E., Cockell, C.S. & Glass, B. (2005b). Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Meteorit. Planet. Sci. 40, 17591776.
Osinski, G.R. & Spray, J.G. (2003). Evidence for the shock melting of sulfates from the Haughton impact structure, Arctic Canada. Earth Planet. Sci. Lett. 215, 357370.
Osinski, G.R., Spray, J.G. & Lee, P. (2001). Impact-induced hydrothermal activity within the Haughton impact structure, Arctic Canada: generation of a transient, warm, wet oasis. Meteorit. Planet. Sci. 36, 731745.
Parnell, J. et al. (2010). Sulfur isotope signatures for rapid colonization of an impact crater by thermophilic microbes. Geology 38, 271274.
Parnell, J., Lee, P., Cockell, C.S. & Osinski, G.R. (2004). Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int. J. Astrobiol. 3, 247256.
Righter, K., Pando, K. & Danielson, L.R. (2009). Experimental evidence for sulfur-rich martian magmas: implications for volcanism and surficial sulfur sources. Earth Planet. Sci. Lett. 288, 235243.
Robinson, B.W. & Kusakabe, M. (1975). Quantitative preparation of sulfur dioxide for 34S/32S analyses from sulphides by combustion with cuprous oxide. Anal. Chem. 47, 11791181.
Rothschild, L.J. (1990). Earth analogs for Martian life. Microbes in evaporites, anew model system for life on Mars. Icarus 88, 246260.
Shearer, C.K., Layne, G.D., Papike, J.J. & Spilde, M.N. (1996). Sulfur isotopic systematic in alteration assemblages in Martian meteorite Allan Hills 84001. Geochim. Cosmochim. Acta 60, 29212926.
Sherlock, S.C., Kelley, S.P., Parnell, J., Green, P., Lee, P., Osinski, G.R. & Cockell, C.S. (2005). Re-evaluating the age of the Haughton impact event. Meteorit. Planet. Sci. 40, 17771787.
Space Studies Board (2007). An Astrobiology Strategy for the Exploration of Mars. National Academies Press, Washington, DC.
Strauss, H. (1997). The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 97118.
Tierney, L.L. & Jakosky, B.M. (2008). Assessing the habitability of Meridiani Planum, Mars, based on thermodynamic energy requirements. In Lunar and Planetary Science Conference XXXIX, abstract 1396.
Toran, L. & Harris, R.F. (1989). Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim. Cosmochim. Acta 53, 2341–2248.
van Zuilen, M. (2008). Stable isotope ratios as a biomarker on Mars. Space Sci. Rev. 135, 221232.
Wagner, T., Boyce, A.J. & Fallick, A.E. (2002). Laser combustion analysis of δ34S of sulfosalt minerals: determination of the fractionation systematics and some crystal-chemical considerations. Geochim. Cosmochim. Acta 66, 28552863.
Yen, A.S. et al. (2008). Hydrothermal processes at Gusev Crater: an evaluation of Paso Robles class soils. J. Geophys. Res. 113, doi: 10.1029/2007JE002978.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed