Skip to main content
×
Home
    • Aa
    • Aa

Physical constraints on the likelihood of life on exoplanets

  • Manasvi Lingam (a1) and Abraham Loeb (a2)
Abstract
Abstract

One of the most fundamental questions in exoplanetology is to determine whether a given planet is habitable. We estimate the relative likelihood of a planet's propensity towards habitability by considering key physical characteristics such as the role of temperature on ecological and evolutionary processes, and atmospheric losses via hydrodynamic escape and stellar wind erosion. From our analysis, we demonstrate that Earth-sized exoplanets in the habitable zone around M-dwarfs seemingly display much lower prospects of being habitable relative to Earth, owing to the higher incident ultraviolet fluxes and closer distances to the host star. We illustrate our results by specifically computing the likelihood (of supporting life) for the recently discovered exoplanets, Proxima b and TRAPPIST-1e, which we find to be several orders of magnitude smaller than that of Earth.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Physical constraints on the likelihood of life on exoplanets
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Physical constraints on the likelihood of life on exoplanets
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Physical constraints on the likelihood of life on exoplanets
      Available formats
      ×
Copyright
Corresponding author
e-mail: manasvi.lingam@cfa.harvard.edu
References
Hide All
AgutterP.S. & WheatleyD.N. (2004). Metabolic scaling: consensus or controversy? Theor. Biol. Med. Model. 1(1), 13.
AirapetianV.S., GlocerA., KhazanovG.V., LoydR.O.P., FranceK., SojkaJ., DanchiW.C. & LiemohnM.W. (2017). How hospitable are space weather affected habitable zones? The role of ion escape. Astrophys. J. Lett. 836, L3.
AkanumaS., NakajimaY., YokoboriS., KimuraM., NemotoN., MaseT., MiyazonoK., TanokuraM. & YamagishiA. (2013). Experimental evidence for the thermophilicity of ancestral life. Proc. Natl. Acad. Sci. USA 110(27), 1106711072.
AllenA.P., BrownJ.H. & GilloolyJ.F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297(5586), 15451548.
AllenA.P., GilloolyJ.F., SavageV.M. & BrownJ.H. (2006). Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl. Acad. Sci. USA 103(24), 91309135.
AngeliD., FerrellJ.E.Jr. & SontagE.D. (2004). Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101(7), 18221827.
AngillettaM.J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, Oxford.
Anglada-EscudéG. et al. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536(7617), 437440.
BainsW. (2004). Many chemistries could be used to build living systems. Astrobiology 4(2), 137167.
BainsW. & Schulze-MakuchD. (2016). The cosmic zoo: the (near) inevitability of the evolution of complex, macroscopic life. Life 6(3), 25.
BallP. (2008). Water as an active constituent in cell biology. Chem. Rev. 108(1), 74108.
BarnoskyA.D. et al. (2012). Approaching a state shift in Earth's biosphere. Nature 486(7401), 5258.
BellE.A., BoehnkeP., HarrisonT.M. & MaoW.L. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA 112(47), 1451814521.
BennerS.A., RicardoA. & CarriganM.A. (2004). Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8(6), 672689.
BentonM.J. (2009). The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time. Science 323(5915), 728.
BolmontE., SelsisF., OwenJ.E., RibasI., RaymondS.N., LeconteJ. & GillonM. (2017). Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1. Mon. Not. R. Astron. Soc. 464(3), 37283741.
BourrierV., EhrenreichD., WheatleyP.J., BolmontE., GillonM., de WitJ., BurgasserA.J., JehinE., QuelozD. & TriaudA.H.M.J. (2017). Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line. Astron. Astrophys. 599, L3.
BrownJ.H., GilloolyJ.F., AllenA.P., SavageV.M. & WestG.B. (2004). Toward a metabolic theory of ecology. Ecology 85(7), 17711789.
CardinaleB.J. et al. (2012). Biodiversity loss and its impact on humanity. Nature 486(7401), 5967.
CarterB. (2008). Five- or six-step scenario for evolution? Int. J. Astrobiol. 7(2), 177182.
ChenJ. & KippingD. (2017). Probabilistic forecasting of the masses and radii of other worlds. Astrophys. J. 834(1), 17.
ChopraA. & LineweaverC.H. (2016). The case for a Gaian bottleneck: the biology of habitability. Astrobiology 16(1), 722.
ChristensenU.R. (2010). Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152(1), 565590.
ChybaC.F. & HandK.P. (2005). Astrobiology: the study of the living universe. Annu. Rev. Astron. Astrophys. 43, 3174.
ClarkeA. (2006). Temperature and the metabolic theory of ecology. Funct. Ecol. 20(2), 405412.
ClarkeA. & FraserK.P.P. (2004). Why does metabolism scale with temperature? Funct. Ecol. 18(2), 243251.
ClarkeA. & RotheryP. (2008). Scaling of body temperature in mammals and birds. Funct. Ecol. 22(1), 5867.
CockellC.S. et al. (2016). Habitability: a review. Astrobiology 16(1), 89117.
CorkreyR., OlleyJ., RatkowskyD., McMeekinT. & RossT. (2012). Universality of thermodynamic constants governing biological growth rates. PLoS ONE 7(2), e32003.
CorkreyR., McMeekinT.A., BowmanJ.P., RatkowskyD.A., OlleyJ. & RossT. (2016). The biokinetic spectrum for temperature. PLoS ONE 11(4), e0153343.
CossinsA.R. & BowlerK. (1987). Temperature Biology of Animals. Chapman & Hall, London.
CranmerS.R. & SaarS.H. (2011). Testing a predictive theoretical model for the mass loss rates of cool stars. Astrophys. J. 741(1), 54.
CuntzM. & GuinanE.F. (2016). About exobiology: the case for dwarf K stars. Astrophys. J. 827(1), 79.
DartnellL.R. (2011). Ionizing radiation and life. Astrobiology 11(6), 551582.
DaviesP.C.W. & WalkerS.I. (2016). The hidden simplicity of biology. Rep. Prog. Phys. 79(10), 102601.
de DuveC. (1995). Vital Dust: Life as a Cosmic Imperative. Basic Books, New York.
de DuveC. (2011). Life as a cosmic imperative? Phil. Trans. R. Soc. A. 369(1936), 620623.
DellA.I., PawarS. & SavageV.M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. USA 108(26), 1059110596.
DellA.I., PawarS. & SavageV.M. (2014). Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83(1), 7084.
DeutschC.A., TewksburyJ.J., HueyR.B., SheldonK.S., GhalamborC.K., HaakD.C. & MartinP.R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105(18), 66686672.
DillonM.E., WangG. & HueyR.B. (2010). Global metabolic impacts of recent climate warming. Nature 467(7316), 704706.
DittmannJ.A. et al. (2017). A temperate rocky super-Earth transiting a nearby cool star. Nature 544(7650), 333336.
DoddM.S., PapineauD., GrenneT., SlackJ.F., RittnerM., PirajnoF., O'NeilJ. & LittleC.T.S. (2017). Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature 543(7643), 6064.
DongC., JinM., LingamM., AirapetianV.S., MaY. & van der HolstB. (2017a). Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. submitted to Proc. Natl. Acad. Sci. USA (arXiv:1705.05535).
DongC., LingamM., MaY. & CohenO. (2017b). Is Proxima Centauri b habitable? A study of atmospheric loss. Astrophys. J. Lett. 837(2), L26.
DownsC.J., HayesJ.P. & TracyC.R. (2008). Scaling metabolic rate with body mass and inverse body temperature: a test of the Arrhenius fractal supply model. Funct. Ecol. 22(2), 239244.
DressingC.D. & CharbonneauD. (2015). The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807(1), 45.
EhlmannB.L. et al. (2016). The sustainability of habitability on terrestrial planets: insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. J. Geophys. Res. Planets 121(10), 19271961.
EnquistB.J., EconomoE.P., HuxmanT.E., AllenA.P., IgnaceD.D. & GilloolyJ.F. (2003). Scaling metabolism from organisms to ecosystems. Nature 423(6940), 639642.
ForbesJ.C. & LoebA. (2017). Evaporation of planetary atmospheres due to XUV illumination by quasars. submitted to Mon. Not. R. Astron. Soc. (arXiv:1705.06741).
FranceK. et al. (2013). The ultraviolet radiation environment around M dwarf exoplanet host stars. Astrophys. J. 763(2), 149.
FrankA. & SullivanW. (2014). Sustainability and the astrobiological perspective: framing human futures in a planetary context. Anthropocene 5, 3241.
FuhrmanJ.A., SteeleJ.A., HewsonI., SchwalbachM.S., BrownM.V., GreenJ.L. & BrownJ.H. (2008). A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. USA 105(22), 77747778.
GarraffoC., DrakeJ.J. & CohenO. (2016). The space weather of Proxima Centauri b. Astrophys. J. Lett. 833(1), L4.
GastonK.J. (2000). Global patterns in biodiversity. Nature 405(6783), 220227.
GaucherE.A., ThomsonJ.M., BurganM.F. & BennerS.A. (2003). Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425(6955), 285288.
GillonM. et al. (2016). Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533(7602), 221224.
GillonM. et al. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642), 456460.
GilloolyJ.F., BrownJ.H., WestG.B., SavageV.M. & CharnovE.L. (2001). Effects of size and temperature on metabolic rate. Science 293(5538), 22482251.
GilloolyJ.F., CharnovE.L., WestG.B., SavageV.M. & BrownJ.H. (2002). Effects of size and temperature on developmental time. Nature 417(6884), 7073.
GilloolyJ.F., AllenA.P., WestG.B. & BrownJ.H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 102(1), 140145.
GilloolyJ.F., AllenA.P., SavageV.M., CharnovE.L., WestG.B. & BrownJ.H. (2006). Response to Clarke and Fraser: effects of temperature on metabolic rate. Funct. Ecol. 20(2), 400404.
GlazierD.S. (2015). Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol. Rev. 90(2), 377407.
GoldenfeldN. & WoeseC. (2011). Life is physics: evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys. 2, 375399.
Haqq-MisraJ., KopparapuR.K. & WolfE.T. (2017). Why do we find ourselves around a yellow star instead of a red star? Int. J. Astrobiol. 110. doi:10.1017/S1473550417000118
HellerR. & ArmstrongJ. (2014). Superhabitable worlds. Astrobiology 14(1), 5066.
HellerR. et al. (2014). Formation, habitability, and detection of extrasolar moons. Astrobiology 14(9), 798835.
HoehlerT.M. (2007). An energy balance concept for habitability. Astrobiology 7(6), 824838.
HooperD.U. et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 335.
HornerJ. & JonesB.W. (2010). Determining habitability: which exoEarths should we search for life? Int. J. Astrobiol. 9(4), 273291.
HumphriesM.M. & McCannK.S. (2014). Metabolic ecology. J. Anim. Ecol. 83(1), 719.
IvesA.R. & CarpenterS.R. (2007). Stability and diversity of ecosystems. Science 317(5834), 5862.
JohnsonR.E., CombiM.R., FoxJ.L., IpW.-H., LeblancF., McGrathM.A., ShematovichV.I., StrobelD.F. & WaiteJ.H. (2008). Exospheres and atmospheric escape. Space Sci. Rev. 139(1), 355397.
JohnstoneC.P., GüdelM., BrottI. & LüftingerT. (2015). Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28.
JudsonO.P. (2017). The energy expansions of evolution. Nat. Ecol. Evol. 1, 0138.
KastingJ.F. & CatlingD. (2003). Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41(1), 429463.
KastingJ.F., KopparapuR., RamirezR.M. & HarmanC.E. (2014). Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proc. Natl. Acad. Sci. USA 111(35), 1264112646.
KauffmanS. (1995). At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford University Press, Oxford.
KhodachenkoM.L. et al. (2007). Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones. Astrobiology 7(1), 167184.
KiangN.Y., SiefertJ., Govindjee & BlankenshipR.E. (2007). Spectral signatures of photosynthesis. I. review of earth organisms. Astrobiology 7(1), 222251.
KingsolverJ.G. (2009). The well-temperatured biologist. Am. Nat. 174(6), 755768.
KingsolverJ.G. & HueyR.B. (2008). Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10(2), 251268.
KopparapuR.K., RamirezR., KastingJ.F., EymetV., RobinsonT.D., MahadevanS., TerrienR.C., Domagal-GoldmanS., MeadowsV. & DeshpandeR. (2013). Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765(2), 131.
LammerH. (2013). Origin and Evolution of Planetary Atmospheres: Implications for Habitability. Springer Briefs in Astronomy. Springer, Berlin.
LammerH. et al. (2009). What makes a planet habitable? Astron . Astrophys. Rev. 17(2), 181249.
LevinS.A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1(5), 431436.
LevinsR. (1968). Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press, Princeton.
LevinsR. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15(3), 237240.
LineweaverC.H. & ChopraA. (2012). The habitability of our earth and other earths: astrophysical, geochemical, geophysical, and biological limits on planet habitability. Annu. Rev. Earth Planet. Sci. 40, 597623.
LineweaverC.H. & DavisT.M. (2002). Does the rapid appearance of life on earth suggest that life is common in the universe? Astrobiology 2(3), 293304.
LingamM. (2016). Interstellar travel and galactic colonization: insights from percolation theory and the Yule process. Astrobiology 16(6), 418426.
LingamM. & LoebA. (2017). Enhanced interplanetary panspermia in the TRAPPIST-1 system. Proc. Natl. Acad. Sci. USA (in press). doi:10.1073/pnas.1703517114.
LoebA., BatistaR.A. & SloanD. (2016). Relative likelihood for life as a function of cosmic time. J. Cosmol. Astropart. Phys. 8, 040.
LovelockJ.E. & MargulisL. (1974). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26(1–2), 210.
LugerR. & BarnesR. (2015). Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15(2), 119143.
MarquetP.A., QuiñonesR.A., AbadesS., LabraF., TognelliM., ArimM. & RivadeneiraM. (2005). Scaling and power-laws in ecological systems. J. Exp. Biol. 208(9), 17491769.
MartinW., BarossJ., KelleyD. & RussellM.J. (2008). Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6(11), 805814.
MartinezC.L.F. (2014). SETI in the light of cosmic convergent evolution. Acta Astron. 104(1), 341349.
MayhewP.J., BellM.A., BentonT.G. & McGowanA.J. (2012). Biodiversity tracks temperature over time. Proc. Natl. Acad. Sci. USA 109(38), 1514115145.
McKayC.P. (2014). Requirements and limits for life in the context of exoplanets. Proc. Natl. Acad. Sci. USA 111(35), 1262812633.
MillerS.L. & LazcanoA. (1995). The origin of life–did it occur at high temperatures? J. Mol. Evol. 41(6), 689692.
MolesA.T. et al. (2014). Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25(5), 11671180.
MonodJ. (1971). Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. Alfred A. Knopf, New York.
MorowitzH. & SmithE. (2007). Energy flow and the organization of life. Complexity 13(1), 5159.
MorrisS.C. (2003). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge.
OwenJ.E. & AlvarezM.A. (2016). UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photon-limited flows. Astrophys. J. 816(1), 34.
PaceN.R. (1991). Origin of life–facing up to the physical setting. Cell 65(4), 531533.
PaceN.R. (2001). The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98(3), 805808.
PascalR., ProssA. & SutherlandJ.D. (2013). Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 3(11), 130156.
PicardA. & DanielI. (2013). Pressure as an environmental parameter for microbial life – a review. Biophys. Chem. 183, 3041.
PriceC.A. et al. (2012). Testing the metabolic theory of ecology. Ecol. Lett. 15(12), 14651474.
PurvisA. & HectorA. (2000). Getting the measure of biodiversity. Nature 405(6783), 212219.
RamirezR.M. & KalteneggerL. (2014). The habitable zones of pre-main-sequence stars. Astrophys. J. Lett. 797(2), L25.
RanjanS. & SasselovD.D. (2016). Influence of the UV environment on the synthesis of prebiotic molecules. Astrobiology 16(1), 6888.
RibasI. et al. (2016). The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present. Astron. Astrophys. 596, A111.
RogersL.A. (2015). Most 1.6 earth-radius planets are not rocky. Astrophys. J. 801(1), 41.
RosenzweigM.L. (1995). Species Diversity in Space and Time. Cambridge Univ. Press, Cambridge.
RothschildL.J. & MancinelliR.L. (2001). Life in extreme environments. Nature 409(6823), 10921101.
RushbyA.J., ClaireM.W., OsbornH. & WatsonA.J. (2013). Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology 13(9), 833849.
SavageV.M., GilloolyJ.F., BrownJ.H., WestG.B. & CharnovE.L. (2004). Effects of body size and temperature on population growth. Am. Nat. 163(3), 429441.
SavageV.M., DeedsE.J. & FontanaW. (2008). Sizing up allometric scaling theory. PLoS Comput. Biol. 4(9), e1000171.
ScaloJ. et al. (2007). M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7(1), 85166.
ScharfC. & CroninL. (2016). Quantifying the origins of life on a planetary scale. Proc. Natl. Acad. Sci. USA 113(29), 81278132.
SchulteP.M. (2015). The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218(12), 18561866.
Schulze-MakuchD. & GuinanE. (2016). Another Earth 2.0? Not so fast. Astrobiology 16(11), 817821.
Schulze-MakuchD. & IrwinL.N. (2008). Life in the Universe: Expectations and Constraints. Springer, Berlin.
SeagerS. (2010). Exoplanet Atmospheres: Physical Processes. Princeton Series in Astrophysics. Princeton University Press, Princeton.
ShieldsA.L., BallardS. & JohnsonJ.A. (2016). The habitability of planets orbiting M-dwarf stars. Phys. Rep. 663(1), 138.
SimpsonG.G. (1964). The nonprevalence of humanoids. Science 143(3608), 769775.
SpiegelD.S. & TurnerE.L. (2012). Bayesian analysis of the astrobiological implications of life's early emergence on Earth. Proc. Natl. Acad. Sci. USA 109(2), 395400.
TarterJ.C. et al. (2007). A reappraisal of the habitability of planets around M dwarf stars. Astrobiology 7(1), 3065.
TaskerE. et al. (2017). The language of exoplanet ranking metrics needs to change. Nat. Astron. 1, 0042.
ThompsonD.W. (1942). On Growth and Form. Cambridge University Press, Cambridge.
TianF. & IdaS. (2015). Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8(3), 177180.
ValenciaD., O'ConnellR.J. & SasselovD. (2006). Internal structure of massive terrestrial planets. Icarus 181(2), 545554.
VidottoA.A., JardineM., MorinJ., DonatiJ.-F., LangP. & RussellA.J.B. (2013). Effects of M dwarf magnetic fields on potentially habitable planets. Astron. Astrophys. 557, A67.
VladiloG., MuranteG., SilvaL., ProvenzaleA., FerriG. & RagazziniG. (2013). The habitable zone of earth-like planets with different levels of atmospheric pressure. Astrophys. J. 767(1), 65.
WangZ., BrownJ.H., TangZ. & FangJ. (2009). Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proc. Natl. Acad. Sci. USA 106(32), 1338813392.
WardP. & BrownleeD. (2000). Rare Earth: Why Complex Life Is Uncommon in the Universe. Copernicus, New York.
WeissM.C., SousaF.L., MrnjavacN., NeukirchenS., RoettgerM., Nelson-SathiS. & MartinW.F. (2016). The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116.
WestG.B., BrownJ.H. & EnquistB.J. (2001). A general model for ontogenetic growth. Nature 413(6856), 628631.
WinnJ.N. & FabryckyD.C. (2015). The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409447.
WolfE.T. (2017). Assessing the habitability of the TRAPPIST-1 system using a 3D climate model. Astrophys. J. Lett. 839(1), L1.
WoodB.E., LinskyJ.L., MüllerH.-R. & ZankG.P. (2001). Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri Using Hubble space telescope Lyα spectra. Astrophys. J. Lett. 547(1), L49L52.
WoodB.E., MüllerH.-R., ZankG.P. & LinskyJ.L. (2002). Measured mass-loss rates of solar-like stars as a function of age and activity. Astrophys. J. 574(1), 412425.
ZendejasJ., SeguraA. & RagaA.C. (2010). Atmospheric mass loss by stellar wind from planets around main sequence M stars. Icarus 210(2), 539544.
ZengL., SasselovD.D. & JacobsenS.B. (2016). Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819(2), 127.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 504
Total number of PDF views: 274 *
Loading metrics...

Abstract views

Total abstract views: 1390 *
Loading metrics...

* Views captured on Cambridge Core between 6th July 2017 - 21st October 2017. This data will be updated every 24 hours.