Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 23
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Davies, Ashley Gerard Sotin, Christophe Choukroun, Mathieu Matson, Dennis L. and Johnson, Torrence V. 2016. Cryolava flow destabilization of crustal methane clathrate hydrate on Titan. Icarus, Vol. 274, p. 23.

    Quick, Lynnae C. Glaze, Lori S. and Baloga, Stephen M. 2016. Cryovolcanic emplacement of domes on Europa. Icarus,

    Quick, Lynnae C. Glaze, Lori S. Baloga, Stephen M. and Stofan, Ellen R. 2016. New approaches to inferences for steep-sided domes on Venus. Journal of Volcanology and Geothermal Research, Vol. 319, p. 93.

    He, Chao and Smith, Mark A. 2014. Identification of nitrogenous organic species in Titan aerosols analogs: Implication for prebiotic chemistry on Titan and early Earth. Icarus, Vol. 238, p. 86.

    He, Chao and Smith, Mark A. 2014. A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan’s atmospheric chemistry. Icarus, Vol. 243, p. 31.

    He, Chao and Smith, Mark A. 2014. Solubility and stability investigation of Titan aerosol analogs: New insight from NMR analysis. Icarus, Vol. 232, p. 54.

    He, Chao and Smith, Mark A. 2013. Identification of nitrogenous organic species in Titan aerosols analogs: Nitrogen fixation routes in early atmospheres. Icarus, Vol. 226, Issue. 1, p. 33.

    Barnes, Jason W. Lemke, Lawrence Foch, Rick McKay, Christopher P. Beyer, Ross A. Radebaugh, Jani Atkinson, David H. Lorenz, Ralph D. Le Mouélic, Stéphane Rodriguez, Sebastien Gundlach, Jay Giannini, Francesco Bain, Sean Flasar, F. Michael Hurford, Terry Anderson, Carrie M. Merrison, Jon Ádámkovics, Máté Kattenhorn, Simon A. Mitchell, Jonathan Burr, Devon M. Colaprete, Anthony Schaller, Emily Friedson, A. James Edgett, Kenneth S. Coradini, Angioletta Adriani, Alberto Sayanagi, Kunio M. Malaska, Michael J. Morabito, David and Reh, Kim 2012. AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance. Experimental Astronomy, Vol. 33, Issue. 1, p. 55.

    Cable, Morgan L. Hörst, Sarah M. Hodyss, Robert Beauchamp, Patricia M. Smith, Mark A. and Willis, Peter A. 2012. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chemical Reviews, Vol. 112, Issue. 3, p. 1882.

    He, Chao Lin, Guangxin and Smith, Mark A. 2012. NMR identification of hexamethylenetetramine and its precursor in Titan tholins: Implications for Titan prebiotic chemistry. Icarus, Vol. 220, Issue. 2, p. 627.

    He, Chao Lin, Guangxin Upton, Kathleen T. Imanaka, Hiroshi and Smith, Mark A. 2012. Structural Investigation of Titan Tholins by Solution-State1H,13C, and15N NMR: One-Dimensional and Decoupling Experiments. The Journal of Physical Chemistry A, Vol. 116, Issue. 19, p. 4760.

    Moore, Jeffrey M. and Pappalardo, Robert T. 2011. Titan: An exogenic world?. Icarus, Vol. 212, Issue. 2, p. 790.

    Neish, Catherine D. Somogyi, Árpád Lunine, Jonathan I. and Smith, Mark A. 2009. Low temperature hydrolysis of laboratory tholins in ammonia-water solutions: Implications for prebiotic chemistry on Titan. Icarus, Vol. 201, Issue. 1, p. 412.

    Shapiro, Robert and Schulze-Makuch, Dirk 2009. The Search for Alien Life in Our Solar System: Strategies and Priorities. Astrobiology, Vol. 9, Issue. 4, p. 335.

    Sittler, E.C. Ali, A. Cooper, J.F. Hartle, R.E. Johnson, R.E. Coates, A.J. and Young, D.T. 2009. Heavy ion formation in Titan's ionosphere: Magnetospheric introduction of free oxygen and a source of Titan's aerosols?. Planetary and Space Science, Vol. 57, Issue. 13, p. 1547.

    Tokano, Tetsuya 2009. Limnological Structure of Titan's Hydrocarbon Lakes and Its Astrobiological Implication. Astrobiology, Vol. 9, Issue. 2, p. 147.

    Wall, S. D. Lopes, R. M. Stofan, E. R. Wood, C. A. Radebaugh, J. L. Hörst, S. M. Stiles, B. W. Nelson, R. M. Kamp, L. W. Janssen, M. A. Lorenz, R. D. Lunine, J. I. Farr, T. G. Mitri, G. Paillou, P. Paganelli, F. and Mitchell, K. L. 2009. Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Geophysical Research Letters, Vol. 36, Issue. 4,

    Zhong, Fang Mitchell, Karl L. Hays, Charles C. Choukroun, Mathieu Barmatz, Martin and Kargel, Jeffrey S. 2009. The rheology of cryovolcanic slurries: Motivation and phenomenology of methanol-water slurries with implications for Titan. Icarus, Vol. 202, Issue. 2, p. 607.

    Neish, C.D. Somogyi, Á. Imanaka, H. Lunine, J.I. and Smith, M.A. 2008. Rate Measurements of the Hydrolysis of Complex Organic Macromolecules in Cold Aqueous Solutions: Implications for Prebiotic Chemistry on the Early Earth and Titan. Astrobiology, Vol. 8, Issue. 2, p. 273.

    Nguyen, Mai-Julie Raulin, François Coll, Patrice Derenne, Sylvie Szopa, Cyril Cernogora, Guy Israël, Guy and Bernard, Jean-Michel 2008. From Titan’s tholins to Titan’s aerosols: Isotopic study and chemical evolution at Titan’s surface. Advances in Space Research, Vol. 42, Issue. 1, p. 48.

  • International Journal of Astrobiology, Volume 5, Issue 1
  • January 2006, pp. 57-65

The potential for prebiotic chemistry in the possible cryovolcanic dome Ganesa Macula on Titan

  • C.D. Neish (a1), R.D. Lorenz (a1) and D.P. O'Brien (a2)
  • DOI:
  • Published online: 01 June 2006

New observations of Titan by the Cassini spacecraft suggest the presence of cryovolcanism on the surface. Cryovolcanism has important astrobiological implications, as it provides a means of exposing Titan's organics to liquid water, transforming hydrocarbons and nitriles into more evolved and oxidized prebiotic species. One possible cryovolcano – the 180 km structure Ganesa Macula – resembles the pancake domes seen on Venus by the Magellan spacecraft. To assess the potential of Ganesa Macula for prebiotic chemistry, we estimate its height using radarclinometry and other methods, and calculate the freezing timescale assuming an initially completely liquid dome. Given height constraints of ~200 m to 4 km, we find that liquid water or water–ammonia environments could be sustained in Ganesa Macula for timescales of the order of 102–105 years. These timescales open a window for prebiotic chemistry far wider than can be explored in terrestrial laboratory experiments.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *