Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-04T03:02:44.678Z Has data issue: false hasContentIssue false

Metamaterial-based electromagnetically induced transparency-like sensor design with low-volume sliding dielectric loadings

Published online by Cambridge University Press:  26 June 2023

Hasan Cetin
Affiliation:
Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey Department of Electrical and Electronics Engineering, Suleyman Demirel University, Isparta, Turkey Department of Electrical and Electronics Engineering, Usak University, Usak, Turkey
Evren Ekmekci*
Affiliation:
Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey Department of Electrical and Electronics Engineering, Suleyman Demirel University, Isparta, Turkey
*
Corresponding author: Evren Ekmekci, Email: evrenekmekci@sdu.edu.tr

Abstract

In this study, tunability of the electromagnetically induced transparency (EIT)-like transmission window by low-volume dielectric loadings is presented both numerically and experimentally in S-band. The EIT-like transmission behavior is obtained by a metamaterial, composed of an electric resonator and a closed-ring resonator patterned on a dielectric substrate. The frequency tuning is obtained by two applications called horizontal sliding application (HSA) and vertical sliding application based on sliding of the low-volume loadings from the edges to geometric center (i.e., inward). For both applications, the frequency tuning has been investigated for dielectric loadings which have relative permittivity of 2.2, 3, 4.5, and 6.15. The results reveal that the proposed sliding applications are effective on tuning the transmission peak frequency. An achieved 1136 and 971 MHz absolute spectral shifts and corresponding 6.34% and 5.41% absolute sensitivities by simulations and measurements, respectively, are the best results which are obtained for HSA at 5 mm shift value. Moreover, 14.67% sensitivity is obtained in simulations for the complete dielectric loading on the resonator in response to the increase in refractive index from 1 to 1.5. It is believed that the proposed applications will contribute to the existent sensing studies.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Harris, SE (1997) Electromagnetically induced transparency. Physics Today 50, 3642. doi:10.1063/1.881806CrossRefGoogle Scholar
Fleischhauer, M, Imamoglu, A and Marangos, JP (2005) Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics 77, 633673. doi:10.1103/RevModPhys.77.633CrossRefGoogle Scholar
Garrido Alzar, CL, Martinez, MAG and Nussenzveig, P (2002) Classical analog of electromagnetically induced transparency. American Journal of Physics 70, 3741. doi:10.1119/1.1412644CrossRefGoogle Scholar
Papasimakis, N, Fedotov, VA, Zheludev, NI and Prosvirnin, SL (2008) Metamaterial analog of electromagnetically induced transparency. Physical Review Letters 101, . doi:10.1103/PhysRevLett.101.253903CrossRefGoogle ScholarPubMed
Hu, J, Lang, T, Hong, Z, Shen, C and Shi, G (2018) Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials. Journal of Lightwave Technology 36, 20832093. doi:10.1109/JLT.2018.2804336CrossRefGoogle Scholar
Han, S, Yang, H and Guo, L (2013) Ultra-broadband electromagnetically induced transparency using tunable self-asymmetric planar metamaterials. Journal of Applied Physics 114, . doi:10.1063/1.4826630CrossRefGoogle Scholar
Tassin, P, Zhang, L, Koschny, T, Economou, EN and Soukoulis, CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Physical Review Letters 102, . doi:10.1103/PhysRevLett.102.053901CrossRefGoogle ScholarPubMed
Fedotov, VA, Rose, M, Prosvirnin, SL, Papasimakis, N and Zheludev, NI (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters 99, . doi:10.1103/PhysRevLett.99.147401CrossRefGoogle ScholarPubMed
Fu, Q, Zhang, F, Fan, Y, Dong, J, Cai, W, Zhu, W, Chen, S and Yang, R (2017) Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory. Applied Physics Letters 110, . doi:10.1063/1.4984596CrossRefGoogle Scholar
Zhu, L, Meng, F-Y, Dong, L, Wu, Q, Che, B-J, Gao, J, Fu, J-H, Zhang, K and Yang, G-H (2015) Magnetic metamaterial analog of electromagnetically induced transparency and absorption. Journal of Applied Physics 117, . doi:10.1063/1.4916189CrossRefGoogle Scholar
Zhu, L, Meng, F-Y, Fu, J-H and Wu, Q (2012) An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes. Journal of Physics D: Applied Physics 45, . doi:10.1088/0022-3727/45/44/445105CrossRefGoogle Scholar
Yu, W, Meng, H, Chen, Z, Li, X, Zhang, X, Wang, F, Wei, Z, Tan, C, Huang, X and Li, S (2018) The bright–bright and bright–dark mode coupling-based planar metamaterial for plasmonic EIT-like effect. Optics Communications 414, 2933. doi:10.1016/j.optcom.2017.12.084CrossRefGoogle Scholar
Hu, S, Liu, D and Yang, H (2019) Electromagnetically induced transparency in an integrated metasurface based on bright–dark–bright mode coupling. Journal of Physics D: Applied Physics 52, . doi:10.1088/1361-6463/ab03c3CrossRefGoogle Scholar
Hu, S, Yang, H, Han, S, Huang, X and Xiao, B (2015) Tailoring dual-band electromagnetically induced transparency in planar metamaterials. Journal of Applied Physics 117, . doi:10.1063/1.4906853CrossRefGoogle Scholar
Çetin, H and Ekmekçi, E (2020) Electromagnetically induced transparency-like metamaterial design and tuning its transmission window with dielectric cube loadings. In 12th International Conference on Electrical and Electronics Engineering (ELECO) 2020, Bursa, Turkey, 8487.Google Scholar
Kang, M, Li, YN, Chen, J, Chen, J, Bai, Q, Wang, HT and Wu, PH (2010) Slow light in a simple metamaterial structure constructed by cut and continuous metal strips. Applied Physics B 100, 699703. doi:10.1007/s00340-010-4184-6CrossRefGoogle Scholar
Lin, XQ, Peng, J, Chen, Z, Yu, JW and Yang, XF (2018) A group-delay-based sensor using active EIT-like effect with double sensing applications. IEEE Sensors Journal 18, 92519256. doi:10.1109/JSEN.2018.2868873CrossRefGoogle Scholar
Nakanishi, T, Otani, T, Tamayama, Y and Kitano, M (2013) Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency. Physical Review B 87, . doi:10.1103/PhysRevB.87.161110CrossRefGoogle Scholar
Bai, Y, Chen, K, Liu, H, Bu, T, Cai, B, Xu, J and Zhu, Y (2015) Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect. Optics Communications 353, 8389. doi:10.1016/j.optcom.2015.05.005CrossRefGoogle Scholar
Fan, Y, Qiao, T, Zhang, F, Fu, Q, Dong, J, Kong, B and Li, H (2017) An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Scientific Reports 7, . doi:10.1038/srep40441Google ScholarPubMed
Li, R, Kong, XK, Liu, S-B, Liu, Z-M and Li, Y-M (2019) Planar metamaterial analogue of electromagnetically induced transparency for a miniature refractive index sensor. Physics Letters A 383, . doi:10.1016/j.physleta.2019.125947CrossRefGoogle Scholar
Tian, Y, Hu, S, Huang, X, Yu, Z, Lin, H and Yang, H (2017) Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing. Journal of Physics D: Applied Physics 50, . doi:10.1088/1361-6463/aa865bCrossRefGoogle Scholar
Lin, XQ, Chen, Z, Yu, JW, Liu, PQ, Li, PF and Chen, ZD (2016) An EIT-based compact microwave sensor with double sensing functions. IEEE Sensors Journal 16, 293298. doi:10.1109/JSEN.2015.2480800CrossRefGoogle Scholar
Shen, Z, Wang, C and Lu, N (2022) All-dielectric electromagnetically induced transparency-like metasurface with breaking symmetric. Materials Research Express 9, . doi:10.1088/2053-1591/ac9aa4CrossRefGoogle Scholar
Liu, N, Weiss, T, Mesch, M, Langguth, L, Eigenthaler, U, Hirscher, M, Sönnichsen, C and Giessen, H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Letters 10, 11031107. doi:10.1021/nl902621dCrossRefGoogle ScholarPubMed
Pan, W, Yan, Y, Ma, Y and Shen, D (2019) A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Optics Communications 431, 115119. doi:10.1016/j.optcom.2018.09.014CrossRefGoogle Scholar
Xu, Z, Wang, Y and Fang, S (2021) Dielectric characterization of liquid mixtures using EIT-like transmission window. IEEE Sensors Journal 21, 1785917867. doi:10.1109/JSEN.2021.3085954CrossRefGoogle Scholar
Ali, L, Wang, C, Meng, F-Y, Wei, Y-C, Tan, X, Adhikari, KK and Zhao, M (2021) Simultaneous measurement of thickness and permittivity using microwave resonator‐based planar sensor. International Journal of RF and Microwave Computer-Aided Engineering 31, . doi:10.1002/mmce.22794CrossRefGoogle Scholar
Varshney, PK and Akhtar, MJ (2021) Permittivity estimation of dielectric substrate materials via enhanced SIW sensor. IEEE Sensors Journal 21, 1210412112. doi:10.1109/JSEN.2021.3064923CrossRefGoogle Scholar
Gil, M, Veléz, P, Aznar-Ballesta, F, Muñoz-Enano, J and Martín, F (2020) Differential sensor based on electroinductive wave transmission lines for dielectric constant measurements and defect detection. IEEE Transactions on Antennas and Propagation 68, 18761886. doi:10.1109/TAP.2019.2938609CrossRefGoogle Scholar
Liu, Q, Deng, H, Meng, P and Sun, H (2021) High sensitivity sensor loaded with octagonal spiral resonators for retrieval of solid material permittivity. IEEE Sensors Journal 21, 2001020017. doi:10.1109/JSEN.2021.3099298CrossRefGoogle Scholar
Ebrahimi, A, Scott, J and Ghorbani, K (2018) Differential sensors using microstrip lines loaded with two split-ring resonators. IEEE Sensors Journal 18, 57865793. doi:10.1109/JSEN.2018.2840691CrossRefGoogle Scholar
Ebrahimi, A, Scott, J and Ghorbani, K (2018) Transmission lines terminated with LC resonators for differential permittivity sensing. IEEE Microwave and Wireless Components Letters 28, 11491151. doi:10.1109/LMWC.2018.2875996CrossRefGoogle Scholar
Wang, C, Ali, L, Meng, F-Y, Adhikari, KK, Zhou, ZL, Wei, YC, Zou, DQ and Yu, H (2021) High-accuracy complex permittivity characterization of solid materials using parallel interdigital capacitor-based planar microwave sensor. IEEE Sensors Journal 21, 60836093. doi:10.1109/JSEN.2020.3041014CrossRefGoogle Scholar
Raveendran, A and Raman, S (2021) Low cost multifunctional planar RF sensors for dielectric characterization and quality monitoring. IEEE Sensors Journal 21, 2405624065. doi:10.1109/JSEN.2021.3114257CrossRefGoogle Scholar
Varshney, PK, Kapoor, A and Akhtar, MJ (2021) Highly sensitive ELC resonator based differential sensor. IEEE Transactions on Instrumentation and Measurement 70, . doi:10.1109/TIM.2021.3113135CrossRefGoogle Scholar
Kiani, S, Rezaei, P, Navaei, M and Abrishamian, MS (2018) Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor. IEEE Sensors Journal 18, 99719977. doi:10.1109/JSEN.2018.2873544CrossRefGoogle Scholar
Ebrahimi, A, Beziuk, G, Scott, J and Ghorbani, K (2020) Microwave differential frequency splitting sensor using magnetic-LC resonators. Sensors 20, . doi:10.3390/s20041066CrossRefGoogle ScholarPubMed
Ali, L, Wang, C, Meng, F-Y, Adhikari, KK, Wei, Y-C, Li, J-H, Song, Z-W and Zhao, M (2021) Design and optimization of interdigitated microwave sensor for multidimensional sensitive characterization of solid materials. IEEE Sensors Journal 21, 2281422822. doi:10.1109/JSEN.2021.3105410CrossRefGoogle Scholar
Chiam, S-Y, Singh, R, Rockstuhl, C, Lederer, F, Zhang, W and Bettiol, AA (2009) Analogue of electromagnetically induced transparency in a terahertz metamaterial. Physical Review B 80, . doi:10.1103/PhysRevB.80.153103CrossRefGoogle Scholar
Lin, XQ, Yu, JW, Jiang, Y, Jin, JY and Fan, Y (2012) Electromagnetically induced transparencies in a closed waveguide with high efficiency and wide frequency band. Applied Physics Letters 101, . doi:10.1063/1.4748121Google Scholar
Padilla, WJ, Aronsson, MT, Highstrete, C, Lee, M, Taylor, AJ and Averitt, RD (2007) Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Physical Review B 75, . doi:10.1103/PhysRevB.75.041102CrossRefGoogle Scholar
Powell, DA, Shadrivov, IV and Kivshar, YS (2009) Nonlinear electric metamaterials. Applied Physics Letters 95, . doi:10.1063/1.3212726CrossRefGoogle Scholar
Arritt, B, Adomanis, B, Khraishi, T and Smith, D (2010) Parametric analysis of the strain-dependent behavior of a metamaterial electric resonator. Applied Physics Letters 97, . doi:10.1063/1.3507892CrossRefGoogle Scholar
Liu, R, Degiron, A, Mock, JJ and Smith, DR (2007) Negative index material composed of electric and magnetic resonators. Applied Physics Letters 90, . doi:10.1063/1.2752120CrossRefGoogle Scholar
Landy, NI, Sajuyigbe, S, Mock, JJ, Smith, DR and Padilla, WJ (2008) Perfect metamaterial absorber. Physical Review Letters 100, . doi:10.1103/PhysRevLett.100.207402CrossRefGoogle ScholarPubMed
Tao, H, Landy, NI, Bingham, CM, Zhang, X, Averitt, RD and Padilla, WJ (2008) A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Optics Express 16, 71817188. doi:10.1364/OE.16.007181CrossRefGoogle ScholarPubMed
Ozden, K, Yucedag, OM and Kocer, H (2016) Metamaterial based broadband RF absorber at X-band. AEU - International Journal of Electronics and Communications 70, 10621070. doi:10.1016/j.aeue.2016.05.002CrossRefGoogle Scholar
Albishi, AM and Ramahi, OM (2018) Highly sensitive microwaves sensors for fluid concentration measurements. IEEE Microwave and Wireless Components Letters 28, 287289. doi:10.1109/LMWC.2018.2805866CrossRefGoogle Scholar
Chin, JY, Lu, M and Cui, TJ (2008) Metamaterial polarizers by electric-field-coupled resonators. Applied Physics Letters 93, . doi:10.1063/1.3054161CrossRefGoogle Scholar
Bala, BD, Rahim, MKA and Murad, NA (2014) Small electrical metamaterial antenna based on coupled electric field resonator with enhanced bandwidth. Electronics Letters 50, 138139. doi:10.1049/el.2013.3884CrossRefGoogle Scholar
Chen, X, Cheng, S, Liang, Y, Zhan, S, Nie, G, Cao, S, Ding, S and Gao, Y (2019) Observation of EIT-like effect in plasmonic metasurface based on the modulation of bright–bright mode coupling. Optics Communications 453, . doi:10.1016/j.optcom.2019.07.075CrossRefGoogle Scholar
Gao, F, Yuan, P, Gao, S, Deng, J, Sun, Z, Jin, G, Zeng, G and Yan, B (2021) Active electromagnetically induced transparency effect in graphene-dielectric hybrid metamaterial and its high-performance sensor application. Nanomaterials 11, . doi:10.3390/nano11082032CrossRefGoogle ScholarPubMed
Yang, M, Liang, L, Zhang, Z, Xin, Y, Wei, D, Song, X, Zhang, H, Lu, Y, Wang, M, Zhang, M, Wang, T and Yao, J (2019) Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells. Optics Express 27, 1952019529. doi:10.1364/OE.27.019520CrossRefGoogle ScholarPubMed
Ma, T, Huang, Q, He, H, Zhao, Y, Lin, X and Lu, Y (2019) All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range. Optics Express 27, 1662416634. doi:10.1364/OE.27.016624CrossRefGoogle ScholarPubMed
Meng, F-Y, Wu, Q, Erni, D, Wu, K and Lee, J (2012) Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Transactions on Microwave Theory and Techniques 60, 30133022. doi:10.1109/TMTT.2012.2209455CrossRefGoogle Scholar
Qin, M, Pan, C, Chen, Y, Ma, Q, Liu, S, Wu, E and Wu, B (2018) Electromagnetically induced transparency in all-dielectric U-shaped silicon metamaterials. Applied Sciences 8, . doi:10.3390/app8101799CrossRefGoogle Scholar
(2023) CST STUDIO SUITE®, Dassault Systèmes, the 3DEXPERIENCE® Company. www.3ds.com/products-services/simulia/products/cst-studio-suite/.Google Scholar
Ekmekci, E, Kose, U, Cinar, A, Ertan, O and Ekmekci, Z (2019) The use of metamaterial type double-sided resonator structures in humidity and concentration sensing applications. Sensors and Actuators A: Physical 297, . doi:10.1016/j.sna.2019.111559CrossRefGoogle Scholar
Pozar, DM (2011) Microwave Engineering, 4th. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Karacan, N, Ekmekci, E and Turhan-Sayan, G (2020) Response to “Comment on ‘Sliding planar conjoined cut-wire-pairs: A novel approach for splitting and controlling the absorption spectra’” [J. Appl. Phys. 128, 126101 (2020)]. Journal of Applied Physics 128, . doi:10.1063/5.0018386CrossRefGoogle Scholar
Christopoulos, T, Tsilipakos, O, Sinatkas, G and Kriezis, EE (2019) On the calculation of the quality factor in contemporary photonic resonant structures. Optics Express 27, 1450514522. doi:10.1364/OE.27.014505CrossRefGoogle ScholarPubMed
Tang, Y, Zhang, Z, Wang, R, Hai, Z, Xue, C, Zhang, W and Yan, S (2017) Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17, . doi:10.3390/s17040784CrossRefGoogle ScholarPubMed