Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T20:27:10.539Z Has data issue: false hasContentIssue false

Millimeter-wave hetero-integrated sources in InP-on-BiCMOS technology

Published online by Cambridge University Press:  12 May 2014

Thomas Jensen
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany. Phone: +49 69 798 47212
Thualfiqar Al-Sawaf
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany. Phone: +49 69 798 47212
Marco Lisker
Affiliation:
IHP – Leibniz-Institut für innovative MikroelektronikGmbH, Frankfurt (Oder), Germany
Srdjan Glisic
Affiliation:
IHP – Leibniz-Institut für innovative MikroelektronikGmbH, Frankfurt (Oder), Germany
Mohamed Elkhouly
Affiliation:
IHP – Leibniz-Institut für innovative MikroelektronikGmbH, Frankfurt (Oder), Germany
Tomas Kraemer
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany. Phone: +49 69 798 47212
Ina Ostermay
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany. Phone: +49 69 798 47212
Chafik Meliani
Affiliation:
IHP – Leibniz-Institut für innovative MikroelektronikGmbH, Frankfurt (Oder), Germany
Bernd Tillack
Affiliation:
IHP – Leibniz-Institut für innovative MikroelektronikGmbH, Frankfurt (Oder), Germany
Viktor Krozer*
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany. Phone: +49 69 798 47212 J. W. Goethe Universität Frankfurt/M, Frankfurt/M, Germany
Olaf Krueger
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany. Phone: +49 69 798 47212
Wolfgang Heinrich
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany. Phone: +49 69 798 47212
*
Corresponding author: V. Krozer Email: viktor.krozer@fbh-berlin.de

Abstract

The paper presents millimeter-wave (mm-wave) signal sources using a hetero-integrated InP-on-BiCMOS semiconductor technology. Mm-wave signal sources feature fundamental frequency voltage-controlled oscillators (VCOs) in BiCMOS, which drive frequency multiplier–amplifier chains in transferred-substrate (TS) InP-DHBT technology, heterogeneously integrated on top of the BiCMOS wafer in a wafer-level bonding process. Both circuits are biased through a single set of bias pads and compact low-loss transitions from BiCMOS to InP circuits and vice versa have been developed, which allows seamless signal routing through both technologies exhibiting 0.5 dB insertion loss up to 200 GHz. One VCO operates at 82 GHz with a tuning range of 600 MHz and an output power of approximately 8 dBm. A frequency doubler combined with this VCO circuit delivers 0 dBm at 164 GHz and a frequency tripler with a similar VCO delivers −10 dBm at 246 GHz. Another hetero-integrated W-band doubler–amplifier circuit demonstrates 12.9 dBm saturated output power with 5.9 dB conversion gain at 96 GHz. A direct comparison of the TS InP-DHBT MMIC with either silicon or traditional AlN carrier substrates shows the favorable properties of the hetero-integrated process discussed here. The results demonstrate the feasibility of hetero-integrated circuits operating well above 100 GHz.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Raman, S.; Chang, T.H.; Dohrman, C.L.; Rosker, M.J.: The DARPA COSMOS program: the convergence of InP and silicon CMOS technologies for high-performance mixed-signal, in Int. Conf. Indium Phosphide and Related Materials (IPRM), 2010.Google Scholar
[2]Kazior, T.E. et al. : A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates, in IEEE Microw. Symp. Technology Digest, 2009, 1113–1116.Google Scholar
[3]Hoke, W.E. et al. : Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit. J. Vac. Sci. Technol. B, 30 (2) (2012), 02B101-1-6.CrossRefGoogle Scholar
[4]Nicolson, S.T. et al. : A low-voltage SiGe BiCMOS 77-GHz automotive radar chipset, microwave theory and techniques. IEEE Transact. 56 (5) Part: 1, (2008), 10921104.Google Scholar
[5]Sarkas, I.; Nicolson, S.T.; Tomkins, A.; Laskin, E.; Chevalier, P.; Sautreuil, B.; Voinigescu, S.P.: An 18-Gb/s, direct QPSK modulation SiGe BiCMOS transceiver for last mile links in the 70–80 GHz band. IEEE Journal Solid-State Circuits 45 (10), 19681980.CrossRefGoogle Scholar
[6]Sano, K.; Fukuyama, H.; Nakamura, M.; Mutoh, M.; Nosaka, H.; Murata, K.: Wide dynamic range transimpedance amplifier IC for 100-G DP-QPSK optical links using 1-μm InP HBTs. IEICE Electron. Express, 9 (12) (2012), 10121017.Google Scholar
[7]Kozhuharov, R.; Bao, M.; Gavell, M.; Zirath, H.: A W- and G-band MMIC source using InP HBT technology, in Int. Microwave Symp., 2012.CrossRefGoogle Scholar
[8]Takahashi, H.; Hirata, A.; Takeuchi, J.; Kukutsu, N.; Kosugi, T.; Murata, K.: 120-GHz-band 20-Gbit/s transmitter and receiver MMICs using quadrature phase shift keying, in 7th European Microwave Integrated Circuits Conf., October 2012, 313–316.CrossRefGoogle Scholar
[9]Kraemer, T.; Rudolph, M.; Schmueckle, F.J.; Wuerfl, J.; Traenkle, G.: InP DHBT process in transferred substrate technology with fT and fmax over 400 GHz. IEEE Trans. Electron Devices 56 (9) (2009), 18971903.CrossRefGoogle Scholar
[10]Krämer, T. et al. : InP-DHBT-on-BiCMOS technology with fT/fmax of 400/350 GHz for heterogeneous integrated millimeter-wave sources. IEEE Trans. Electron Devices, 60 (2013), 2209.CrossRefGoogle Scholar
[11]Ostermay, I. et al. : Three-dimensional InP DHBT on SiGe BiCMOS integration by means of benzocyclobutene based wafer bonding for MM-wave circuits, Microelectron. Eng. (2013), http://dx.doi.org/10.1016/j.mee.2013.11.012, to be published.CrossRefGoogle Scholar
[12]Ostermay, I. et al. : 200 GHz interconnects for InP-on-BiCMOS integration, in Int. Microwave Symp., 2013.Google Scholar
[13]Jensen, T. et al. : A 164 GHz hetero-integrated source in InP-on-BiCMOS technology, in Proc. EuMIC, European Microwave Integrated CIRCUITS Conf., 2013.Google Scholar
[14]Krozer, V. et al. : “InP on BiCMOS technology platform for millimeter-wave and THz MMIC” 2013 6th Millimeter Waves and THz Technology Workshop (UCMMT), UK, Europe, China; Publication Year: 2013, 1–2.Google Scholar