Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T11:24:53.563Z Has data issue: false hasContentIssue false

A miniaturized CPW-fed CSRR-loaded quad-port MIMO antenna for 5.5/6.5 GHz wireless applications

Published online by Cambridge University Press:  28 July 2023

D. Rajesh Kumar*
Affiliation:
Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India
T. Sangeetha
Affiliation:
Department of Electronics and Communication Engineering, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, Tamilnadu, India
K. G. Sujanth Narayan
Affiliation:
Department of Electronics and Communication Engineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
G. Venkat Babu
Affiliation:
Department of Electronics and Communication Engineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
V. Prithivirajan
Affiliation:
Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India
M. S. K. Manikandan
Affiliation:
Department of Electronics and Communication Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu, India
*
Corresponding author: D. Rajesh Kumar; Email: sdrk87@gmail.com

Abstract

For forthcoming wireless applications, a small and highly decoupled complementary split ring resonators (CSRR)–loaded co-planar waveguide (CPW)–fed antenna for dual-band applications is investigated. The low-profile antenna consists of a CSRR-loaded rectangular radiating element with a truncated bottom, giving a wideband performance over the frequency ranges of 5.28–5.52 GHz and 6–7.2 GHz. The antenna has been printed on a widely used FR4 substrate measuring 7.5 × 10.5 × 1.6 mm3 in volume. This research’s suggested antenna is turned into a 4 × 4 multi input multi output (MIMO) construction using a 25 × 25 mm2 printed circuit board. Individual antennas were isolated by nearly 20 dB without using a decoupling device. The antenna has been built, and the measured and simulated results correspond well. Computing envelope correlation coefficient (ECC), channel capacity (CC), and channel capacity loss (CCL) further validates the antenna’s performance (−). The antenna has an overall gain of around 2.54 dBi and a radiation efficiency of approximately 89% throughout the relevant spectral range, which is much better for wireless applications. The suggested antenna’s omnidirectional emission pattern makes it a potential contender for future wireless and cellular applications.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuo, YL and Wong, KL (2003) Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations. IEEE Transactions on Antennas and Propagation 51(9), 21872192.Google Scholar
Liu, WC, Chen, WR and Wu, CM (2004) Printed double S-shaped monopole antenna for wideband and multiband operation of wireless communications. IEE Proceedings—Microwaves, Antennas and Propagation 151(6), 473476.CrossRefGoogle Scholar
Ammann, MJ and Farrell, R (2005) Dual-band monopole antenna with stagger-tuned arms for broad banding. In IEEE International Workshop on Antenna Technology, 278281.Google Scholar
John, M and Ammann, MJ (2006) Integrated antenna for multiband multi-national wireless combined with GSM1800/PCS1900/IMT200 extension. Microwave and Optical Technology Letters 48(3), 613615.CrossRefGoogle Scholar
Ge, Y, Esselle, KP and Bird, TS (2006) Compact triple-band multiband monopole antenna. International Workshop on Antenna Technology 1, 172175.Google Scholar
Wang, H (2006) Dual-resonance monopole antenna with tuning stubs. IEE Proceedings—Microwaves, Antennas and Propagation 153(4), 395399.CrossRefGoogle Scholar
Wang, H and Zheng, M (2008) Triple-band wireless local area network monopole antenna. IET Microwaves, Antennas & Propagation 2(4), 367372.CrossRefGoogle Scholar
Herraiz-Martínez, FJ, Zamora, G, Paredes, F and Bonache, J (2011) Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs. IEEE Antennas and Wireless Propagation Letters 10, 15281531.CrossRefGoogle Scholar
Long, S and Walton, M (1979) A dual-frequency stacked circular-disc antenna. IEEE Transactions on Antennas and Propagation 27(2), 270273.CrossRefGoogle Scholar
Khan, MU and Sharawi, MS (2014) Isolation improvement using an MTM inspired structure with a patch-based MIMO antenna system. In The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, 27182722.CrossRefGoogle Scholar
Sharawi, MS, Khan, MU, Numan, AB and Aloi, DN (2013) A CSRR loaded MIMO antenna system for ISM band operation. IEEE Transactions on Antennas and Propagation 61(8), 42654274.CrossRefGoogle Scholar
Ramachandran, A, Mathew, S, Viswanathan, VP, Pezholil, M and Kesavath, V (2016) Diversity-based four-port multiple input multiple output antenna loaded with interdigital structure for high isolation. IET Microwaves, Antennas & Propagation 10(15), 16331642.CrossRefGoogle Scholar
Ramachandran, A, Valiyaveettil Pushpakaran, S, Pezholil, M and Kesavath, V (2016) A four-port MIMO antenna using concentric square-ring patches loaded with CSRR for high isolation. IEEE Antennas and Wireless Propagation Letters 15, 11961199.CrossRefGoogle Scholar
Luo, Y, Chu, QX, Li, JF and Wu, YT (2013) A planar H-shaped directive antenna and its application in compact MIMO Antenna. IEEE Transactions on Antennas and Propagation 61(9), 48104814.CrossRefGoogle Scholar
Liao, WJ, Hsieh, CY, Dai, BY and Hsiao, BR (2014) Inverted-F/slot integrated dual-band four-antenna system for WLAN Access Points. IEEE Antennas and Wireless Propagation Letters 14, 847850.CrossRefGoogle Scholar
MoradiKordalivand, A, Rahman, TA and Khalily, M (2014) Common elements wideband MIMO antenna system for WiFi/LTE access-point applications. IEEE Antennas and Wireless Propagation Letters 13, 16011604.CrossRefGoogle Scholar
Sonkki, M, Pfeil, D, Hovinen, V and Dandekar, KR (2014) Wideband planar four-element linear antenna array. IEEE Antennas and Wireless Propagation Letters 13, 16631666.CrossRefGoogle Scholar
Herraiz-Martínez, J, García-Muñoz, LE, Gonzalez-Ovejero, D, Gonzalez-Posadas, V and Segovia-Vargas, D (2009) Dual-frequency printed dipole loaded with split ring resonators. IEEE Antennas and Wireless Propagation Letters 8, 137140.CrossRefGoogle Scholar
Wang, H, Liu, L, Zhang, Z, Li, Y and Feng, Z (2015) A wideband compact WLAN/WiMAX MIMO antenna based on dipole with V-shaped ground branch. IEEE Transactions on Antennas and Propagation 63(5), 22902295.CrossRefGoogle Scholar
Sharawi, MS, Ikram, M and Shamim, A (2017) A two concentric slot loop based connected array MIMO antenna system for 4 G/5 G terminals. IEEE Transactions on Antennas and Propagation 99, 11.Google Scholar
Kumar, A, Ansari, AQ, Kanaujia, BK and Kishor, J (2018) High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications. Frequenz 72(9–10), 415427.CrossRefGoogle Scholar
Dash, JC and Sarkar, D (2022) A four-port CSRR-loaded dual-band MIMO antenna with suppressed higher order modes. IEEE Access 10, 3077030778.CrossRefGoogle Scholar
Montero-de Paz, J, Ugarte-Munoz, E, Herraiz-Martinez, FJ, Gonzalez-Posadas, V, Garcia-Munoz, LE and SegoviaVargas, D (2011) Multi-frequency self-diplexed single patch antennas loaded with split ring resonators. Progress In Electromagnetics Research 113, 4766.CrossRefGoogle Scholar
Herraiz-Martínez, FJ, Paredes, F, Zamora, G, Martin, F and Bonache, J (2012) Dual-band printed dipole antenna loaded with open complementary split-ring resonators for wireless applications. Microwave and Optical Technology Letters 54(4), 10141017.CrossRefGoogle Scholar
Caloz, C, Itoh, T and Rennings, A (2008) CRLH metamaterial leaky wave and resonant antennas. IEEE Antennas and Propagation Magazine 50(5), 2539.CrossRefGoogle Scholar