Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T17:23:53.168Z Has data issue: false hasContentIssue false

A novel LTCC differentially Fed UWB antenna for the 60 GHz band

Published online by Cambridge University Press:  15 March 2011

Bill Yang*
Affiliation:
IRCTR, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Phone: +31 15 2781046.
Alexander G. Yarovoy
Affiliation:
IRCTR, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Phone: +31 15 2781046.
A. Shenario Ezil Valavan
Affiliation:
IRCTR, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. Phone: +31 15 2781046.
Koen Buisman
Affiliation:
DIMES, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands.
Oleksiy Shoykhetbrod
Affiliation:
Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR, Neuenahrer Strasse 20, 53343 Wachtberg, Germany.
*
Corresponding author: B. Yang Email: y.c.yang@tudelft.nl

Abstract

In this paper a novel differentially fed Ultra-Wide Band (UWB) antenna in low-temperature co-fired ceramics (LTCC) technology to be used in the 60 GHz band for integrated RF front-ends is presented. The antenna is based on the aperture stacked patch fed via H-shaped aperture to achieve more than 10 GHz operational bandwidth. The antenna is fed by a parallel-wire transmission line which enables the antenna to be directly integrated with differential Monolithic Microwave Integrated Circuits (MMICs). To alleviate influence of the surface waves (efficiently excited in LTCC material due to its high dielectric constant) on the antenna radiation and realize uni-directional radiation patterns, a dedicated shield is added to the antenna. The measured results of the shielded antenna showed that the antenna has an operational bandwidth from 51 GHz to over 65 GHz, the gain is about 3.5–8 dBi, and −5 dB beamwidth is about ±30°. The measurement results also demonstrated that the shield indeed improves the antenna impedance bandwidth, gain, and radiation patterns substantially.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Sheen, D.M.; McMakin, D.L.; Hall, T.E.: Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech., 49 (9) (2001), 15811592.CrossRefGoogle Scholar
[2]Vázquez, M.M.; Holzwarth, S.; Oikonomopoulos-Zachos, C.; Rivera, A.: Wideband, balanced-fed 60 GHz antennas for integrated transceivers on LTCC substrate, in European Conf. on Antennas and Propagation EuCAP 2010, Barcelona, 12–16 April 2010.Google Scholar
[3]Lee, J.; Nobutaka, K.; Traille, A.; Pinel, S.; Laskar, J.; Tentzeris, M.M.: Advanced 3D LTCC passive components using cavity structures for 60 GHz gigabit wireless systems, in Asia-Pacific Microwave Conf. 2006, Yokohama, 12–15 December 2006, pp. 356359.Google Scholar
[4]Sun, M.; Zhang, Y.P.; Chua, K.M.; Wai, L.L.; Liu, D.; Gaucher, B.P.: Integration of yagi antenna in LTCC package for differential 60-GHz radio. IEEE Trans. Antennas Propag., 56 (8) (2008), 27802783.CrossRefGoogle Scholar
[5]Lamminen, A.E.I.; Säily, J.; Vimpari, A.R.: 60-GHz patch antennas and arrays on LTCC with embedded-cavity substrates. IEEE Trans. Antennas Propag., 56 (9) (2008), 28652874.CrossRefGoogle Scholar
[6]Panther, A.; Petosa, A.; Stubbs, M.G.; Kautio, K.: A wideband array of stacked patch antennas using embedded air cavities in LTCC. IEEE Microw. Wirel. Compon. Lett., 15 (12) (2005), 916918.CrossRefGoogle Scholar
[7]Venot, Y.; Schuler, K.; Wiesbeck, W.: Tapered slot antenna for LTCC multilayer substrate integration in mm-wave applications, in INICA ‘03, Berlin, 17–19 September 2003, pp. 1719.Google Scholar
[8]Methfessel, S.: Design of a balanced-fed patch-excited horn antenna at millimeter-wave frequencies, in European Conf. on Antennas and Propagation EuCAP 2010, Barcelona, 12–16 April 2010.Google Scholar
[9]Targonski, S.D.; Waterhouse, R.B.; Pozar, D.M.: Design of wide-band aperture-stacked patch microstrip antennas. IEEE Trans. Antennas Propag., 46 (1998), 12451251.CrossRefGoogle Scholar
[10]Li, R.; DeJean, G.; Tentzeris, M.M.; Papapolymerou, J.; Laskar, J.: Radiation-pattern improvement of patch antennas on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology. IEEE Trans. Antennas Propag., 53 (1) (2005), 200208.Google Scholar
[11]Xue, Q.; Zhang, X.Y.; Chin, C.-H.K.: A novel differential-fed patch antenna. IEEE Antennas Wirel. Propag. Lett., 5 (2006), 471474.CrossRefGoogle Scholar
[12]Gao, S.C.; Li, L.W.; Leong, M.S.; Yeo, T.S.: Wide-band microstrip antenna with an H-shaped coupling aperture. IEEE Trans. Veh. Technol., 51 (2002), 1726.Google Scholar
[13]Valavan, A.S.E.; Yang, B.; Yarovoy, A.; Ligthart, L.P.: An M-band differentially fed, aperture coupled stacked patch antenna in LTCC, in EuRAD 2008, Amsterdam, 30–31 October 2008, pp. 200203.Google Scholar
[14]Yang, B.; Vorobyov, A.; Yarovoy, A.G.; Ligthart, L.P.; Rentsch, S.; Muller, J.: A novel shielded UWB antenna in LTCC for radar and communications applications, in ICUWB 2008, Hannover, 10–12 September 2008, pp. 117120.CrossRefGoogle Scholar
[15]DuPont Microcircuit Materials: 943 low-loss green tape [Online]. Available: http://www.dupont.com/MCM/en_US/PDF/datasheets/943.pdf.Google Scholar
[16]Alhouri, L.; Rentsch, S.; Stephan, R.; Trabert, J.F.; Müller, J.; Hein, M.: 60 GHz patch antennas in LTCC technology for high data-rate communication systems, in INICA ‘07, Munich, 28–30 March 2007, pp. 186189.CrossRefGoogle Scholar