Skip to main content Accessibility help
×
Home

A superheterodyne 300 GHz wireless link for ultra-fast terahertz communication systems

  • Iulia Dan (a1), Guillaume Ducournau (a2), Shintaro Hisatake (a3), Pascal Szriftgiser (a4), Ralf-Peter Braun (a5) and Ingmar Kallfass (a1)...

Abstract

A superheterodyne transmission scheme is adopted and analyzed in a 300 GHz wireless point-to-point link. This was realized using two different intermediate frequency (IF) systems. The first uses fast digital synthesis which provides an IF signal centered around a carrier frequency of 10 GHz. The second involves the usage of commercially available mixers, which work as direct up- and down-converters, to generate the IF input and output. The radio frequency components are based on millimeterwave monolithic integrated circuits at a center frequency of 300 GHz. Transmission experiments over distances up to 10 m are carried out. Data rates of up to 60 Gbps using the first IF option and up to 24 Gbps using the second IF option are achieved. Modulation formats up to 32QAM are successfully transmitted. The linearity of this link and of its components is analyzed in detail. Two local oscillators (LOs), a photonics-based source and a commercially available electronic source are employed and compared. This work validates the concept of superheterodyne architecture for integration in a beyond-5G network, supplying important guidelines that have to be taken into account in the design steps of a future wireless system.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A superheterodyne 300 GHz wireless link for ultra-fast terahertz communication systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A superheterodyne 300 GHz wireless link for ultra-fast terahertz communication systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A superheterodyne 300 GHz wireless link for ultra-fast terahertz communication systems
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Iulia Dan, E-mail: iulia.dan@ilh.uni-stuttgart.de

References

Hide All
1.Fettweis, G and Alamouti, S (2014) 5G: Personal mobile internet beyond what cellular did to telephony. IEEE Communications Magazine, 52, 140–125.
2.Ericsson Mobility Report, June 2019. Available at: http://www.ericsson.com/mobility-report/.
3.World Radio Communication Conference. Available at: http://www.itu.int/en/ITU-R/conferences/wrc/2015/Pages/default.aspx.
4.IEEE standard 802.15.3d-2017 for high data rate wireless multi-media networks amendment 2: 100 Gbps wireless switched point-to-point physical layer, IEEE-SA Standards Board.
5.Castro, C, Nellen, S, Elschner, R, Sackey, I, Emmerich, R, Merkle, T, Globisch, B, de Felipe, D and Schubert, C (2019) 32 GBd 16 QAM wireless transmission in the 300 GHz Band using a PIN Diode for THz upconversion, 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, California, USA, 2019, pp. 1–3.
6.Hamada, H, Fujimura, T, Abdo, I, Okada, K, Song, H, Sugiyama, H, Matsuzaki, H and Nosaka, H (2018) 300-GHz 100 Gbps InP-HEMT wireless transceiver using a 300-GHz fundamental mixer. In 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 1480–1483.
7.Rodríguez-Vázquez, P, Grzyb, J, Heinemann, B and Pfeiffer, UR (2019) A 16-QAM 100-Gbps 1-M wireless link With an EVM of 17 percent at 230 GHz in an SiGe Technology. IEEE Microwave and Wireless Components Letters, 29, 297299.
8.Lee, S, Dong, R, Yoshida, T, Amakawa, S, Hara, S, Kasamatsu, A, Sato, J and Fujishima, M (2019) An 80-Gb/s 300-GHz-Band Single-Chip CMOS Transceiver. In IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 35773588, Dec. 2019.
9.Dan, I, Grötsch, CM, Shiba, S, and Kallfass, I (2017), Investigation of local oscillator isolation in a 300 GHz wireless link. In 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, 2017, pp. 15.
11.Kallfass, I, Dan, I, Rey, S, Harati, P, Antes, J, Tessmann, A, Wagner, S, Kuri, M, Weber, R, Massler, H, Leuther, A, Merkle, T and Kürner, T. (2015) Towards MMIC-Based 300 GHz indoor wireless communication systems. IEICE Transactions on Electronics, E98-C, 10811090.
12.Kallfass, I, Harati, P, Dan, I, Antes, J, Boes, F, Rey, S, Merkle, T, Wagner, S, Massler, H, Tessmann, A and Leuther, A (2017) MMIC chipset for 300 GHz indoor wireless communication. In 2017 IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ, USA, 2017, pp. 86–89.
13.Leuther, A, Tessmann, A, Massler, H, Losch, R, Schlechtweg, M, Mikulla, M and Ambacher, O (2008) 35 nm metamorphic HEMT MMIC technology. In 20th International Conference on Indium Phosphide and Related Materials, 2008 IPRM, Versailles, 2008, pp. 1–4.
14.Tessmann, A, Leuther, A, Wagner, S, Massler, H, Kuri, M, Stulz, H, Zink, M, Riessle, M and Merkle, T (2017) A 300 GHz low-noise amplifier S-MMIC for use in next-generation imaging and communication applications. In 2017 IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, 2017, pp. 760–763.
15.Antes, J and Kallfass, I (2015) Performance estimation for broadband multi-gigabit millimeter- and sub-millimeter-wave wireless communication links. IEEE Transactions on Microwave Theory and Techniques, 63, 32883299.
16.Chen, J, Kuylenstierna, D, Gunnarsson, SE, He, ZS, Eriksson, T, Swahn, T and Zirath, H (2018) Influence of white LO noise on wideband communication. IEEE Transactions on Microwave Theory and Techniques, 66, July 2018, pp. 33493359.
17.Weber, R, Tessmann, A, Zink, M, Kuri, M, Kallfass, I, Stulz, H, Riessle, M, Massler, H, Maier, T, Leuther, A and Schlechtweg, M (2011) A W-Band x12 frequency multiplier MMIC in waveguide package using quartz and ceramic transitions. In 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Waikoloa, HI, 2011, pp. 1–4.
18.Minicurcuits Datasheet. Available at https://ww2.minicircuits.com/pdfs/ZX05-24MH+.pdf.
19.Georgiadis, A (2004) Gain, phase imbalance, and phase noise effects on error vector magnitude. IEEE Transactions on Vehicular Technology, 53, 443449.
20.Rohde & Schwarz Broadcasting Divison, Bit Error Ratio BER as a Function of SNR. Available at https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/7bm03/7BM03_4E.pdf.
21.Shaik, RA, Rahman, Md. S and Islam, AR (2006) On the extended relationship among EVM, BER, and SNR as performance metrics. In 4th International Conference on Electrical and Computer Engineering ICECE, Dhaka, 2006, pp. 408411.
22.Chang, F, Onohara, K and Mizuochi, T (2010) Forward error correction for 100 G transport networks. IEEE Communications Magazine, 48, S48S55.
23.Miller, SL and O'Dea, RJ (1998) Peak power and bandwidth efficient linear modulation. IEEE Transactions on Communications, 46, 16391648.

Keywords

Type Description Title
PDF
Supplementary materials

Dan et al. supplementary material
Dan et al. supplementary material

 PDF (746 KB)
746 KB

A superheterodyne 300 GHz wireless link for ultra-fast terahertz communication systems

  • Iulia Dan (a1), Guillaume Ducournau (a2), Shintaro Hisatake (a3), Pascal Szriftgiser (a4), Ralf-Peter Braun (a5) and Ingmar Kallfass (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.