Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:14:25.363Z Has data issue: false hasContentIssue false

The d-Radar: a bistatic system based on conformal arrays

Published online by Cambridge University Press:  03 March 2016

Gaspare Galati*
Affiliation:
Electronic Engineering Department, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy
Paola Carta
Affiliation:
Electronic Engineering Department, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy
Mauro Leonardi
Affiliation:
Electronic Engineering Department, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy
Francesco Madia
Affiliation:
SEASTEMA/Fincantieri S.p.A., Via Giacomo Peroni, 130 – building 4, 00131 Rome, Italy
Rossella Stallone
Affiliation:
SEASTEMA/Fincantieri S.p.A., Via Giacomo Peroni, 130 – building 4, 00131 Rome, Italy
Stefania Franco
Affiliation:
SEASTEMA/Fincantieri S.p.A., Via Giacomo Peroni, 130 – building 4, 00131 Rome, Italy
*
Corresponding author:G. Galati Email: gaspare.galati@uniroma2.it

Abstract

Multifunction radars based on active phased arrays are well known and widely studied systems. The concepts of bistatic architecture, conformal array and digital beam forming (DBF) are combined in this paper to define a novel multifunction radar for point defense. The conical shape of the antenna overcomes the significant limitations in the azimuth coverage of 360° of fixed-faces phased arrays due to the beam scanning up to 45°. The usage of separate transmit/receive arrays and the DBF technique adds the operational flexibility and the possibility of multiple simultaneous functions, with an optimal time-energy resources exploitation. After a short description of its technological demonstrator, some significant design trade-off, and operating aspects of the proposed architecture, called d-Radar, are described, showing the main differences with respect to the classical, four faces, and phased-array multifunction radar architecture. It is described how the operating modes can be made more and more similar to a “staring” or “ubiquitous” radar permitting an instantaneous detection and location of short-range, low-elevation targets for sea and ground operations. Finally, some remarks about the resources management and scheduling are shown with the results from a case of study.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Billetter, D.R.: Multifunction Array Radar, Artech House, Norwood, 1989.Google Scholar
[2] Sabatini, S.; Tarantino, M.: Multifunction Array Radar System Design and Analysis, Artech House, 1994.Google Scholar
[3] Madia, F.; Maestrini, A.: Radar bistatico (Bistatic radar), patent application n. RM2014A000005 (Fincantieri S.p.A.), 9 January 2014.Google Scholar
[4] Skolnik, M.: System Aspects of Digital Beamforming Ubiquitous Radar, Memorandum Report no. NRL/MR/5007-02-8625, Naval Research Laboratory, USA, 2002.CrossRefGoogle Scholar
[5] Galati, G.; Madia, F.; Carta, P.; Piracci, E.G.; Stallone, R.; Massardo, M.: Time for a change in phased array radar architectures – Part I: Planar vs. conformal array, in Proc. of IRS, Dresden, Germany, 24–26 June 2015.CrossRefGoogle Scholar
[6] Galati, G.; Madia, F.; Carta, P.; Piracci, E.G.; Franco, S.; Quattrociocchi, S.: Time for a change in phased array radar architectures – Part II: the d-Radar, in Proc. of IRS, Dresden, Germany, 24–26 June 2015.CrossRefGoogle Scholar
[7] Josefsson, L.; Persson, P.: Conformal Array Antenna Theory and Design, Wiley-IEEE Press, 2006, 496. ISBN: 978-0-471-46584-3.CrossRefGoogle Scholar
[8] Steyskal, H.: Mutual coupling analysis of cylindrical and conical arrays, in IEEE Antennas and Propagation Society Int. Symp., June 1974, vol. 12, 293–294.Google Scholar
[9] Rudge, A.W.; Milne, K.; Olver, A.D.; Knight, P.: The Handbook of Antenna Design, vol. 2, chapter 11, P. Peregrinus, London, 1983, IEE electromagnetic waves series, 16 (978-1-84919-377-1) – G.V. Borgiotti, “Conformal Arrays”.CrossRefGoogle Scholar
[10] Wirth, W.-D.: Radar Techniques Using Array Antennas, 2nd ed., IET (The Institution of Engineering and Technology), London, 2013 (978-1-84919-699-4).CrossRefGoogle Scholar
[11] Harman, S.A.; Hume, A.L.: System for the detection of incoming munitions, International Patent Application PCT WO2011/121286 A1.Google Scholar
[12] Harman, S.; Hume, A.: Applications of staring surveillance radars. IEEE Int. Radar Conf. 2015, 0270–0273, ISBN 978-1-4799-823.Google Scholar
[13]The LCMR”, Jane's International Defense Review, Volume 42, 2009.Google Scholar
[14] Zhang, G.; Doviak, R.J.; Zrnic, D.S.; Palmer, R.; Lei, L.; Al-Rashid, Y.: polarimetric phased-array radar for weather measurement: a planar or cylindrical configuration?. J. Atmosph. Ocean. Technol., 28 (2011), 6373.CrossRefGoogle Scholar
[15] Karmkashi, S.; Zhang, G.: An optimal design of a cylindrical polarimetric phased array radar for weather sensing. Radio Sci., 47, RS2017 (2012), 110.Google Scholar
[16] Leifer, M.C.; Chandrasekar, V.; Perl, E.: Dual polarized array approaches for MPAR air traffic and weather radar applications, in IEEE Int. Symp. on Phased Array Systems & Technology, Waltham, MA, 15–18 October 2013, 485–489. doi: 10.1109/ARRAY.2013.6731876.111.CrossRefGoogle Scholar
[17] Thales's APAR multifunction radar passes test. Microw. J., (2013). http://www.microwavejournal.com/articles/19702-thaless-apar-multifunction-radar-passes-test. Accessed April 2015.Google Scholar
[18] Galati, G.: 100 Years of Radar, chapters 9 and 10, Springer, Switzerland, 2016 (available since October, 2015, ISBN 978-3-319-00583-6).CrossRefGoogle Scholar
[19] Smits, A.B.; van Genderen, P.: The APAR multifunction radar – system overview, in IEEE Int. Symp. on Phased Array Systems and Technology, Boston, MA, 17 October 2003, 241–246.Google Scholar
[20] Aboul-Seoud, A.K.; Hamed, A.M.; Abd-El-Latif, M.: A conformal conical phased array antenna for modern radars, in IEEE Aerospace Conf., Big Sky, MT, 1–8 March 2014, 1–7. doi: 10.1109/AERO.2014.6836483.CrossRefGoogle Scholar
[21] Rabideau, D.J.; Parker, P.: Ubiquitous MIMO multifunction digital array radar, in Conf. Record of 37th Asilomar Conf. on Signal Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003, 1057–1064.Google Scholar
[22] Alter, J.J.; White, R.M.; Kretschmer, F.F.; Olin, I.D.; Temes, C.L.: Ubiquitous radar: an implementation concept, in Proc. of 2004 IEEE Radar Conf., Philadelphia, PA, USA, 26–29 April 2004, 65–70.Google Scholar
[23] Qing-long, B.; Yue, Z.; Jian, Y.; Zeng-ping, C.: Method to determine CPI for ubiquitous radar, in Proc. IEEE Int. Conf. on Signal Processing, Beijing, China, 24–28 October 2010, 1927–1930.CrossRefGoogle Scholar
[24] Orlando, D.; Ricci, G.; Bar-Shalom, Y.: Track before detect algorithms for targets with kinematic constraints. IEEE Trans. Aerosp. Electron. Syst., 47 (3) (2011), 18371849.CrossRefGoogle Scholar
[25] Li, W.; Yang, J.; Huang, Y.: Keystone transform-based space-variant range migration correction for airborne forward-looking scanning radar. IET Electron. Lett., 48 (2) (2012), 121122.CrossRefGoogle Scholar
[26] Barton, D.K.: Radar Equations for Modern Radar, chapter 2, Artech House, 2013, 36.Google Scholar
[27] Miranda, S.L.C.; Baker, C.J.; Woodbridge, K.; Griffiths, H.D.: Comparison of scheduling algorithms for multifunction radar. IET Radar Sonar Navig., 1 (6) (2007), 414424.CrossRefGoogle Scholar
[28] Mir, H.S.; Guitoni, A.: Variable dwell-time scheduling for multifunction radar. IEEE Trans. Autom. Sci. Eng., 11 (2) (2014), 463472.CrossRefGoogle Scholar
[29] Stromberg, D.; Grahn, P.: Scheduling of tasks in phased array radar, in Proc. IEEE Int. Symp. on Phased array Systems and Technology, October 1996, 318–321.Google Scholar
[30] Winter, E.; Baptiste, P.: On scheduling a multifunction radar. Aerosp. Sci. Technol., 11 (2007), 289294.CrossRefGoogle Scholar
[31] Mir, H.; Wilkinson, J.D.: Task scheduling algorithm for an air and missile defense radar, in Proc. IEEE Radar Conf., 26–30 May 2008, 1–6.CrossRefGoogle Scholar
[32] Kuo, T-W.; Chao, Y-S.; Kuo, C-F.; Chang, C.: Real-time dwell scheduling of component-oriented phased array radars. IEEE Trans. Comput., 54 (1) (2005), 4760.Google Scholar
[33] Jeauneau, V.; Guenais, T.; Barbaresco, F.: Scheduling on a fixed multifunction radar antenna with hard time constraint, in Proc. Radar Symp. IRS, 19–21 June 2013, 375–380.CrossRefGoogle Scholar
[34] Mir, H.; Abdelaziz, F.B.: Cyclic task scheduling for multifunction radar. IEEE Trans. Autom. Sci. Eng., 9 (3) (2012), 529537.CrossRefGoogle Scholar
[35]IET Radar, Sonar & Navigation, Special Issue: Micro Doppler, Volume 9, Issue 9, December 2015, 1137–1302.CrossRefGoogle Scholar
[36] Perry, J.; Biss, A:, Wind farm clutter mitigation in air surveillance radar, in Proc. RADAR 2007, Boston, USA, 17–20 April 2007, 93–98.CrossRefGoogle Scholar
[37] Menitt, M.W.; Klingle-Wilson, D.; Campbell, S.D.: Wind shear detection with pencil-beam radars. Lincoln Lab. J., 2 (3) (1989), 483510.Google Scholar
[38] Alistair Drake, V.; Reynolds, D.R.: Radar Entomology, CABI, 2012 (ISBN 987-1-84593-556-6).Google Scholar