Skip to main content Accessibility help

Cost-effectiveness of a cervical screening program with human papillomavirus vaccine

  • Elizaveta Sopina (a1) and Toni Ashton (a1)


Objectives: Recent introduction of a quadrivalent human papillomavirus (HPV) vaccine for girls in New Zealand is expected to decrease the incidence of HPV infection as well as resultant cytological abnormalities and cervical cancer. This may affect the cost-effectiveness of the national cervical screening program by reducing the incidence of lesions detected. This study investigates the cost-effectiveness of the current cervical screening policy with and without the HPV vaccine and compares these results with the cost-effectiveness of a range of other screening strategies.

Methods: A Markov state-transition model was built based on the natural history of HPV and cervical carcinogenesis. The model followed a hypothetical cohort of girls from 12 years to 85 years of age or death, through screening and treatment pathways. The model compared a “no vaccine and current screening” strategy with a selection of screening strategies with different age ranges and frequency intervals.

Results: The most cost-effective cervical screening strategy in the presence of the HPV vaccine would be screening women aged 30–60 every 5 years. Moving to this screening strategy from the base case of no vaccine and the current New Zealand strategy of screening women aged 20–69 every 3 years is predicted to have an incremental cost per quality-adjusted life-year gained of NZ$9,841 (€4,428).

Conclusions: Reducing screening intensity from 3 to 5 years as well as narrowing the screening age range for the vaccinated cohort once they reach mid-twenties is recommended. The importance of achieving a high vaccine uptake in New Zealand remains high.



Hide All
1. Anderson, R, Haas, M, Shanahan, M. The cost-effectiveness of cervical screening in Australia: What is the impact of screening at different intervals or over a different age range? Aust N Z J Public Health. 2008;32:4352.
2. Anttila, A, Ronco, G, Clifford, G, et al. Cervical cancer screening programmes and policies in 18 European countries. Br J Cancer. 2004;91:935941.
3. Ault, KA, The Future II Study Group. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: A combined analysis of four randomised clinical trials. Lancet. 2007;369:18611868.
4. Australian Institute of Health and Welfare. Cervical screening in Australia 2006–2007. Cancer Series. Canberra: Australian Institute of Health and Welfare; 2009.
5. Brisson, M, Van de Velde, N, De Wals, P, Boily, M-C. The potential cost-effectiveness of prophylactic human papillomavirus vaccines in Canada. Vaccine. 2007;25:53995408.
6. Canfell, K, Barnabas, R, Patnick, J, Beral, V. The predicted effect of changes in cervical screening practice in the UK: Results from a modelling study. Br J Cancer. 2004;91:530536.
7. Debicki, D, Ferko, N, Demarteau, N, et al. Comparison of detailed and succinct cohort modelling approaches in a multi-regional evaluation of cervical cancer vaccination. Vaccine. 2008;26 (Suppl 5):F16F28.
8. Elbasha, E, Dasbach, E, Insinga, R. A Multi-Type HPV Transmission Model. Bull Math Biol. 2008;70:21262176.
9. European Cervical Cancer Screening Network. European guidelines for quality assurance in cervical screening. Luxembourg: Health & Consumer Protection Directorate-General, European Commission; 2003.
10. Goldie, SJ, Grima, D, Kohli, M, et al. A comprehensive natural history model of HPV infection and cervical cancer to estimate the clinical impact of a prophylactic HPV-16/18 vaccine. Int J Cancer. 2003;106:896904.
11. Goldie, SJ, Kohli, M, Grima, D, et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst. 2004;96:604615.
12. Hillemanns, P, Petry, K, Largeron, N, et al. Cost-effectiveness of a tetravalent human papillomavirus vaccine in Germany. J Public Health. 2008;17:7786.
13. Insinga, R, Dasbach, E, Elbasha, E. Epidemiologic natural history and clinical management of Human Papillomavirus (HPV) Disease: A critical and systematic review of the literature in the development of an HPV dynamic transmission model. BMC Infect Dis. 2009;9:119.
14. Joura, EA, Leodolter, S, Hernandez-Avila, M, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: A combined analysis of three randomised clinical trials. Lancet. 2007;369:16931702.
15. Kim, JJ, Wright, TC, Goldie, SJ. Cost-effectiveness of alternative triage strategies for atypical squamous cells of undetermined significance. JAMA. 2002;287:23822390.
16. Koulova, A, Tsui, J, Irwin, K, et al. Country recommendations on the inclusion of HPV vaccines in national immunization programmes among high-income countries, June 2006–January 2008. Vaccine. 2008;26:65296541.
17. Kulasingam, S, Connelly, L, Conway, E, et al. A cost-effectiveness analysis of adding a human papillomavirus vaccine to the Australian National Cervical Cancer Screening Program. Sex Health. 2007;4:165175.
18. Linos, A, Riza, E. Comparisons of cervical cancer screening programmes in the European Union. Eur J Cancer. 2000;36:22602265.
19. Mandelblatt, JS, Lawrence, WF, Gaffikin L, et al. Costs and benefits of different strategies to screen for cervical cancer in less-developed countries. J Natl Cancer Inst. 2002;94:14691483.
20. Maxwell, GL, Carlson, JW, Ochoa, M, et al. Costs and effectiveness of alternative strategies for cervical cancer screening in military beneficiaries. Obstet Gynecol. 2002;100:740748.
21. Ministry of Health. Cancer: New registrations and deaths 2005. Wellington: Ministry of Health; 2008.
22. Ministry of Health, HPV Project Team. The HPV (Human Papillomavirus) Immunisation Programme. National implementation strategic overview. Wellington: Ministry of Health; 2008.
23. Muñoz, N, Castellsagué, X, de González, AB, Gissmann, L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24 (Suppl 3):S1S10.
24. Myers, ER, McCrory, DC, Nanda, K, Bastian, L, Matchar, DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis Am J Epidemiol. 2000;151:11581171.
25. Newall, AT, Beutels, P, Wood, JG, Edmunds, WJ, MacIntyre, CR. Cost-effectiveness analyses of human papillomavirus vaccination. Lancet Infect Dis. 2007;7:289296.
26. Parkin, DM, Bray, F. Chapter 2: The burden of HPV-related cancers. Vaccine. 2006;24 (Suppl 3):S11S25.
27. Rogoza, RM, Ferko, N, Bentley, J, et al. Optimization of primary and secondary cervical cancer prevention strategies in an era of cervical cancer vaccination: A multi-regional health economic analysis. Vaccine. 2008;26 (Suppl 5):F46F58.
28. Sanders, GD, Taira, AV. Cost-effectiveness of a potential vaccine for human papillomavirus. Emerg Infect Dis. 2003;9:3748.
29. Sanders, GD, Taira, AV. Cost effectiveness of a potential vaccine for human papillomavirus. Emerg Infect Dis. 2003;9:3748.
30. Schiffman, M, Castle, PE, Jeronimo, J, Rodriguez, AC, Wacholder, S. Human papillomavirus and cervical cancer. Lancet. 2007;370:890907.
31. Stratton, KR, Durch, JS, Lawrence, RS. Vaccines for the 21st century a tool for decision making. Washington DC: National Academy Press; 2000.
32. Techakehakij, W, Feldman, RD. Cost-effectiveness of HPV vaccination compared with Pap smear screening on a national scale: A literature review. Vaccine. 2008;26:62586265.
33. Van de Velde, N, Brisson, M, Boily, M-C. Modeling human papillomavirus vaccine effectiveness: Quantifying the impact of parameter uncertainty. Am J Epidemiol. 2007;165:762775.
34. Wheeler, CM, Dennis, JM. Clinical aspects and epidemiology of HPV infections. Perspectives in medical virology. vol. 8. Philadelphia: Elsevier; 2002:129.


Type Description Title
Supplementary Figure

Sopina Supplementary Figure
Supplementary Figure 1: Markov Model for the natural history of HPV. Boxes represent health states; arrows represent possible transitions between the states.

 Word (98 KB)
98 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed