Hostname: page-component-7d684dbfc8-26pbs Total loading time: 0 Render date: 2023-09-25T05:52:36.558Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

New opportunities to control livestock diseases in the post-genomics era

Published online by Cambridge University Press:  22 December 2010

M. W. SHIRLEY*
Affiliation:
Institute for Animal Health, Ash Road, Pirbright GU24 0NF, UK
B. CHARLESTON
Affiliation:
Institute for Animal Health, Ash Road, Pirbright GU24 0NF, UK
D. P. KING
Affiliation:
Institute for Animal Health, Ash Road, Pirbright GU24 0NF, UK
*
*To whom all correspondence should be addressed. Email: martin.shirley@bbsrc.ac.uk

Summary

Throughout the 21st century, livestock diseases will impact upon the productivity of domesticated livestock and compromise the ability to feed a growing global population. The focus of the present review is to outline how the recent rapid expansion of genetic sequence data available for both pathogens and hosts can be exploited to develop new tools to improve the ways in which livestock diseases can be controlled. In the post-genomics era of the future, there will be a more intimate understanding of the way in which pathogens interact with their hosts and the key molecules that define host–pathogen relationships; knowledge that can be utilized to generate novel diagnostics and vaccination strategies. However, experience from the global rinderpest eradication programme highlights that effective disease control is a multifactorial process. Clearly, appropriate new therapeutic and diagnostic tools can play a critical role in our ability to monitor and limit the spread of diseases. However, adequate resources are also required: these are principally financial and also include the availability of trained personnel and veterinary infrastructure; international cooperation, transparency between different countries and sharing of epidemiological data and ownership of disease; acceptance of the difference in perception of importance of diseases in the developed world v. the developing world.

Type
Foresight Project on Global Food and Farming Futures
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ansorge, W. J. (2009). Next-generation DNA sequencing techniques. New Biotechnology 25, 195203.CrossRefGoogle ScholarPubMed
Blake, D. P., Hesketh, P., Archer, A., Carroll, F., Smith, A. L. & Shirley, M. W. (2004). Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entrée to the identification of protective antigens. Molecular and Biochemical Parasitology 138, 143152.CrossRefGoogle ScholarPubMed
Blake, D. P., Shirley, M. W. & Smith, A. L. (2006). Genetic identification of antigens protective against coccidia. Parasite Immunology 28, 305314.CrossRefGoogle ScholarPubMed
Brownlie, J., Peckham, C., Waage, J., Woolhouse, M., Lyall, C., Meagher, L., Tait, J., Baylis, M. & Nicoll, A. (2006). Foresight. Infectious Diseases: Preparing for the Future. Future Threats. London: Office of Science and Innovation.Google Scholar
Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S. & Bayley, H. (2009). Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology 4, 265270.CrossRefGoogle ScholarPubMed
Costard, S., Wieland, B., De Glanville, W., Jori, F., Rowlands, R., Vosloo, W., Roger, F., Pfeiffer, D. U. & Dixon, L. K. (2009). African swine fever: how can global spread be prevented? Philosophical Transactions of the Royal Society of London B: Biological Science 364, 26832696.CrossRefGoogle ScholarPubMed
De Alwis, M. C. L. & Australian Centre for International Agricultural Research. (1999). Haemorrhagic Septicaemia. ACIAR Monograph No. 57. Canberra, Australia: Australian Centre for International Agricultural Research.Google Scholar
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J. & Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules. Science 323, 133138.CrossRefGoogle ScholarPubMed
Ferris, N. P., Nordengrahn, A., Hutchings, G. H., Reid, S. M., King, D. P., Ebert, K., Paton, D. J., Kristersson, T., Brocchi, E., Grazioi, S. & Merza, M. (2009). Development and laboratory validation of a lateral flow device for the detection of foot-and-mouth disease virus in clinical samples. Journal of Virological Methods 155, 1017.CrossRefGoogle ScholarPubMed
Hoffmann, B., Beer, M., Reid, S. M., Mertens, P., Oura, C. A. L., Van Rijn, P. A., Slomka, M. J., Banks, J., Brown, I. H., Alexander, D. J. & King, D. P. (2009). A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Veterinary Microbiology 139, 123.CrossRefGoogle ScholarPubMed
Martinelli, A., Cheesman, S., Hunt, P., Culleton, R., Raza, A., Mackinnon, M. & Carter, R. (2005). A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proceedings of the National Academy of Sciences, USA 102, 814819.CrossRefGoogle Scholar
Paton, D. J., Sumption, K. J. & Charleston, B. (2009). Options for control of foot-and-mouth disease: knowledge, capability and policy. Philosophical Transactions of the Royal Society of London B: Biological Science 364, 26572667.CrossRefGoogle ScholarPubMed
Pattaradilokrat, S., Cheesman, S. J. & Carter, R. (2007). Linkage group selection: towards identifying genes controlling strain specific protective immunity in malaria. PLoS ONE 2(9), e857. doi:10.1371/journal.pone.0000857.CrossRefGoogle ScholarPubMed
Robinson, M. W., Menon, R., Donnelly, S. M., Dalton, J. P. & Ranganathan, S. (2009). An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Molecular and Cellular Proteomics 8, 18911907.CrossRefGoogle ScholarPubMed
Rodriguez, L. L. & Grubman, M. J. (2009). Foot and mouth disease virus vaccines. Vaccine 27(Suppl. 4), D90D94.CrossRefGoogle ScholarPubMed
Roeder, P. & Rich, K. (2009). Conquering the Cattle Plague: the global effort to eradicate rinderpest. In Millions Fed: Proven Successes in Agricultural Development (Eds Spielman, D. J. & Pandya-Lorch, R.), pp. 109116. Washington, DC: IFPRI.Google Scholar