Skip to main content
×
×
Home

Evaluation and application of the CPM Dairy Nutrition model

  • L. O. TEDESCHI (a1), W. CHALUPA (a2), E. JANCZEWSKI (a2), D. G. FOX (a3), C. SNIFFEN (a4), R. MUNSON (a2), P. J. KONONOFF (a5) and R. BOSTON (a2)...
Summary
SUMMARY

The Cornell-Penn-Miner (CPM) Dairy is an applied mathematical nutrition model that computes dairy cattle requirements and the supply of energy and nutrients based on characteristics of the animal, the environment and the physicochemical composition of the feeds under diverse production scenarios. The CPM Dairy was designed as a steady-state model to use rates of degradation of feed carbohydrate and protein and the rate of passage to estimate the extent of ruminal fermentation, microbial growth, and intestinal digestibility of carbohydrate and protein fractions in computing energy and protein post-rumen absorption, and the supply of metabolizable energy and protein to the animal. The CPM Dairy version 3.0 (CPM Dairy 3.0) includes an expanded carbohydrate fractionation scheme to facilitate the characterization of individual feeds and a sub-model to predict ruminal metabolism and intestinal absorption of long chain fatty acids. The CPM Dairy includes a non-linear optimization algorithm that allows for least-cost formulation of diets while meeting animal performance, feed availability and environmental restrictions of modern dairy cattle production. When the CPM Dairy 3.0 was evaluated with data of 228 individual lactating dairy cows containing appropriate information including observed dry matter intake, the linear regression between observed and model-predicted milk production values indicated the model was able to account for 79·8% of the variation. The concordance correlation coefficient (CCC) was high (rc=0·89) without a significant mean bias (0·52 kg/d; P=0·12). The accuracy estimated by the CCC was 0·997. The root of mean square error of prediction (MSEP) was 5·14 kg/d (0·16 of the observed mean) and 87·3% of the MSEP was due to random errors, suggesting little systematic bias in predicting milk production of high-producing dairy cattle. Based upon these evaluations, it was concluded the CPM Dairy 3.0 model adequately predicts milk production at the farm level when appropriate animal characterization, feed composition and feed intake are provided; however, further improvements are needed to account for individual animal variation.

Copyright
Corresponding author
*To whom all correspondence should be addressed. Email: wmchalupa@aol.com
References
Hide All
Alderman G. (2001). A critique of the Cornell Net Carbohydrate and Protein System with emphasis on dairy cattle. 1. The rumen model. Journal of Animal and Feed Sciences 10, 124.
Allen M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science 83, 15981624.
Allen M. S., Bradford B. J. & Harvatine K. J. (2005). The cow as a model to study food intake regulation. Annual Review Nutrition 25, 523547.
Bauman D. E. (2000). Regulation of nutrient partitioning during lactation: homeostasis and homeorhesis revisited. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction (Ed. Cronjé P. B.), pp. 311328. New York: CABI Publishing.
Bibby J. & Toutenburg H. (1977). Prediction and Improved Estimation in Linear Models. Berlin, Germany: John Wiley and Sons.
Boston R. C., Fox D. G., Sniffen C. J., Janczewski R., Munsen R. & Chalupa W. (2000). The conversion of a scientific model describing dairy cow nutrition and production to an industry tool: the CPM Dairy project. In Modelling Nutrient Utilization in Farm Animals (Eds McNamara J. P., France J. & Beever D.), pp. 361377. Oxford: CABI Publishing.
Chalupa W. & Boston R. (2003). Development of the CNCPS and CPM models: the Sniffen affect. In Proceedings of Cornell Nutrition Conference for Feed Manufacturers, pp. 1524. Syracuse, NY: New York State College of Agriculture and Life Sciences, Cornell University.
Chaves A. V., Brookes I. M., Waghorn G. C., Woodward S. L. & Burke J. L. (2006). Evaluation of Cornell Net Carbohydrate and Protein System predictions of milk production, intake and liveweight change of grazing dairy cows fed contrast silages. Journal of Agricultural Science, Cambridge 144, 8591.
Dantzig G. B. (1951). A proof of the equivalence of the programming problem and the game problem. In Activity Analysis of Production and Allocation (Ed. Koopmans T. C.), pp. 330335. New York, NY: John Wiley and Sons.
Engstrom D. F., Mathison G. W. & Goonewardene L. A. (1992). Effect of β-glucan, starch, and fibre content and steam vs. dry rolling of barley grain on its degradability and utilisation by steers. Animal Feed Science and Technology 37, 3346.
Forbes J. M. (2003). The multifactorial nature of food intake control. Journal of Animal Science 81, E139E144.
Fox D. G., Sniffen C. J., O'connor J. D., Russell J. B. & Van Soest P. J. (1990). The Cornell Net Carbohydrate and Protein System for Evaluating Cattle Diets, No. 34. Ithaca, NY: Cornell University Agricultural Experiment Station.
Fox D. G., Tedeschi L. O., Tylutki T. P., Russell J. B., Van Amburgh M. E., Chase L. E., Pell A. N. & Overton T. R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology 112, 2978.
Garnsworthy P. C. & Jones G. P. (1987). The influence of body condition at calving and dietary protein supply on voluntary food intake and performance in dairy cows. Animal Production 44, 347353.
Garnsworthy P. C. & Topps J. H. (1982). The effect of body condition of dairy cows at calving on their food intake and performance when given complete diets. Animal Production 35, 113119.
Haefner J. W. (1996). Modeling Biological Systems: Principles and Applications. New York: Chapman and Hall.
Hall M. B., Pell A. N. & Chase L. E. (1998). Characteristics of neutral detergent-soluble fiber fermentation by mixed ruminal microbes. Animal Feed Science and Technology 70, 2329.
Hatfield R. D. & Weimer P. J. (1995). Degradation characteristics of isolated and in situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. Journal of the Science of Food and Agriculture 69, 185196.
Hayirli A., Grummer R. R., Nordheim E. V. & Crumps P. M. (2003). Models for predicting dry matter intake of Holsteins during the prefresh transition period. Journal of Dairy Science 86, 17711779.
Hintz R. W., Mertens D. R. & Albrecht K. A. (1996). Effects of sodium sulfite on recovery and composition of detergent fiber and lignin. Journal of the Association of Official Analytical Chemists 79, 1622.
Illius A. W. & Jessop N. S. (1996). Metabolic constraints on voluntary intake in ruminants. Journal of Animal Science 74, 30523062.
Kolmogoroff A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari 4, 8391.
Kolver E. S., Muller L. D., Barry M. C. & Penno J. W. (1998). Evaluation and application of the Cornell Net Carbohydrate and Protein System for dairy cows fed diets based on pasture. Journal of Dairy Science 81, 20292039.
Kononoff P. J., Ivan S. K., Matzke W., Grant R. J., Stock R. A. & Klopfenstein T. J. (2006). Milk production of dairy cows fed wet corn gluten feed during the dry period and lactation. Journal of Dairy Science 89, 26082617.
Lanzas C., Sniffen C. J., Seo S., Tedeschi L. O. & Fox D. G. (2007). A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants. Animal Feed Science and Technology 136, 167190.
Liao J. J. Z. (2003). An improved concordance correlation coefficient. Pharmaceutical Statistics 2, 253261.
Lin L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255268.
Littell R. C., Milliken G. A., Stroup W. W., Wolfinger R. D. & Schabenberger O. (2006). SAS for Mixed Models. 2nd edn.Cary, NC: SAS Institute.
Macciotta N. P. P., Vicario D., Di Mauro C. & Cappio-Borlino A. (2004). A multivariate approach to modeling shapes of individual lactation curves of cattle. Journal of Dairy Science 87, 10921098.
McDonald P., Henderson A. R. & Heron S. J. E. (1991). The Biochemistry of Silage. 2nd edn.London, UK: Chalcombe Publications.
Mertens D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International 85(6), 12171240.
Moate P. J., Boston R. C., Lean I. J. & Chalupa W. (2006). Short communication: Further validation of the fat sub-model in the Cornell-Penn-Miner dairy model. Journal of Dairy Science 89, 10521056.
Moate P. J., Chalupa W., Jenkins T. G. & Boston R. C. (2004). A model to describe ruminal metabolism and intestinal absorption of long chain fatty acids. Animal Feed Science and Technology 112, 79105.
Nelson D. L. & Cox M. M. (2005). Lehninger Principles of Biochemistry. 4th edn.New York, NY: W.H. Freeman and Company.
Neter J., Kutner M. H., Nachtsheim C. J. & Wasserman W. (1996). Applied Linear Statistical Models. 4th edn.Boston: McGraw-Hill Publishing Co.
Newman S., Lynch T. & Plummer A. A. (2000). Success and failure of decision support systems: learning as we go. Journal of Animal Science 77, 112.
Offner A. & Sauvant D. (2004). Comparative evaluation of the Molly, CNCPS, and LES rumen models. Animal Feed Science and Technology 112, 107130.
Overton T. R. & Waldron M. R. (2004). Nutritional management of transition dairy cows: strategies to optimize metabolic health. Journal of Dairy Science 87, E105E119.
Pitt R. E., Van Kessel J. S., Fox D. G., Pell A. N., Barry M. C. & Van Soest P. J. (1996). Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system. Journal of Animal Science 74, 226244.
Roseler D. K., Fox D. G., Chase L. E., Pell A. N. & Stone W. C. (1997). Development and evaluation of equations for prediction of intake for lactating Holstein dairy cows. Journal of Dairy Science 80, 878893.
Ruiz R., Albrecht G. L., Tedeschi L. O., Jarvis G., Russell J. B. & Fox D. G. (2001). Effect of monensin on the performance and nitrogen utilization of lactating dairy cows consuming fresh forage. Journal of Dairy Science 84, 17171727.
Ruiz R., Tedeschi L. O., Marini J. C., Fox D. G., Pell A. N., Jarvis G. & Russell J. B. (2002). The effect of a ruminal nitrogen (N) deficiency in dairy cows: evaluation of the Cornell net carbohydrate and protein system ruminal N deficiency adjustment. Journal of Dairy Science 85, 29862999.
Sniffen C. J., O'Connor J. D., Van Soest P. J., Fox D. G. & Russell J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.
St-Pierre N. R. (2001). Integrating quantitative findings from multiple studies using mixed models methodology. Journal of Dairy Science 84, 741755.
Stone W. C. (1996). Applied topics in dairy cattle nutrition: 1. Soyhulls as either a forage or concentrate replacement in early lactation Holstein dairy cattle, 2. Evaluation of the Cornell Net Carbohydrate and Protein System's metabolizable protein requirement as supply in Holstein dairy cattle, 3. In vitro effects of lipids on fermentation systems. Ph.D. Dissertation, Cornell University.
Tedeschi L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems 89, 225247.
Tedeschi L. O., Fox D. G., Chase L. E. & Wang S. J. (2000). Whole-herd optimization with the Cornell Net Carbohydrate and Protein System. I. Predicting feed biological values for diet optimization with linear programming. Journal of Dairy Science 83, 21392148.
Tedeschi L. O., Fox D. G., Pell A. N., Lanna D. P. D. & Boin C. (2002). Development and evaluation of a tropical feed library for the Cornell Net Carbohydrate and Protein System model. Scientia Agricola 59, 118.
Tedeschi L. O., Fox D. G., Sainz R. D., Barioni L. G., Medeiros S. R. & Boin C. (2005). Using mathematical models in ruminant nutrition. Scientia Agricola 62, 7691.
Tedeschi L. O., Seo S., Fox D. G. & Ruiz R. (2006). Accounting for energy and protein reserve changes in predicting diet-allowable milk production in cattle. Journal of Dairy Science 89, 47954807.
Tylutki T. P. (2002). Improving herd nutrient management on dairy farms: (1) Daily milk production variance in high producing cows as an indicator of diet nutrient balance. (2) On-farm six sigma quality management of diet nutrient variance. (3) Feedstuff variance on a commercial dairy and the predicted associated milk production variance. (4) A model to predict cattle nitrogen and phosphorus excretion with alternative herd feed programs. (5) Accounting for uncertainty in ration formulation. Ph.D. Dissertation, Cornell University.
Tylutki T. P., Fox D. G. & McMahon M. (2004). Implementation of nutrient management planning on a dairy farm. The Professional Animal Scientist 20, 5865.
Van Soest P. J. (1994). Nutritional Ecology of the Ruminant. 2nd edn.Ithaca, NY: Comstock Publishing Associates.
Van Soest P. J., Van Amburgh M. E., Robertson J. B. & Knaus W. F. (2005). Validation of the 2·4 times lignin factor for ultimate extent of NDF digestion, and curve peeling rate of fermentation curves into pools. In Proceedings of Cornell Nutrition Conference for Feed Manufacturers, pp. 139150. Syracuse, NY: New York State College of Agriculture and Life Sciences, Cornell University.
Van Soest P. J., Van Amburgh M. E. & Tedeschi L. O. (2000). Rumen balance and rates of fiber digestion. In Proceedings of Cornell Nutrition Conference for Feed Manufacturers, pp. 150166. Rochester, NY: New York State College of Agriculture and Life Sciences, Cornell University.
Zhou J. L., Tits A. L. & Lawrence C. T. (1997). User's Guide for FFSQP version 3.7: A FORTRAN Code for Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality and Linear Constraints, p. 46. University of Maryland, College Park, MD: Electrical Engineering Department and Institute for Systems Research.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 276 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd February 2018. This data will be updated every 24 hours.