Skip to main content Accessibility help
×
Home

Quantitative trait loci underlying root yield and starch content in an F 1 derived cassava population (Manihot esculenta Crantz)

  • S. SRAPHET (a1), A. BOONCHANAWIWAT (a1), T. THANYASIRIWAT (a1) (a2), R. THAIKERT (a1), S. WHANKAEW (a1), D. R. SMITH (a1), O. BOONSENG (a3), D. A. LIGHTFOOT (a4) and K. TRIWITAYAKORN (a1) (a5)...

Summary

Cassava (Manihot esculenta Crantz) root yield measured as fresh weight (hereafter root yield) is declining in much of Asia and Africa. The current study aimed to identify quantitative trait loci (QTL) underlying both root and starch fresh weights in F 1 cassava. Eight QTL were associated with root yield, underlying 12·9–40·0% of the phenotypic variation (PVE). Nine QTL were associated with starch content, underlying 11·3–27·3% of the PVE. Quantitative trait loci were identified from four different environments that encompassed two locations and 3 years. Consistent QTL for root yield, YLD5_R11 and YLD8_L09 on linkage group (LG) 16, were detected across years and locations. Quantitative trait loci for starch content, ST3_R09, ST6_R10 and ST7_R11 on LG 11, were found across 3 years. Co-localization of QTL for both traits with positive correlation was detected between YLD3_R10 and ST5_R10 on LG 9. Candidate genes within the QTL that were consistent across multiple environments were identified based on cassava genome sequences. Genes predicted to encode for glycosyl hydrolases, uridine 5’-diphospho-(UDP)-glucuronosyl transferases and UDP-glucosyl transferases were found among the 44 genes located within the region containing the QTL controlling starch content. Sixteen genes predicted to encode proteins that were possibly associated with root yield were identified. The QTL controlling root yield and starch content in the current study will be useful for molecular breeding of cassava through marker-assisted selection. The identification of candidate genes underlying both traits will be useful both as markers and for gene expression studies.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: kanokporn.tri@mahidol.ac.th

References

Hide All
Bainbridge, Z., Tomlins, K., Wellings, K. & Westby, A. (1996). Methods for Assessing Quality Characteristics of Non-Grain Starch Staples (Part 3 Laboratory Methods). Chatham, UK: Natural Resources Institute.
Balyejusa Kizito, E., Rönnberg-Wästljung, A. C., Egwang, T., Gullberg, U., Fregene, M. & Westerbergh, A. (2007). Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas 144, 129136.
Boonchanawiwat, A., Sraphet, S., Boonseng, O., Lightfoot, D. A. & Triwitayakorn, K. (2011). Quantitative trait loci underlying plant and first branch height in cassava (Manihot esculenta Crantz). Field Crops Research 121, 343349.
Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V. & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research 37, D233D238.
Chen, X., Fu, Y., Xia, Z., Jie, L., Wang, H., Lu, C. & Wang, W. (2012). Analysis of QTL for yield-related traits in cassava using an F 1 population from non-inbred parents. Euphytica 187, 227234.
Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169196.
FAO (2014). FAOSTAT. Rome: FAO. Available from: http://www.faostat.fao.org (verified 25 January 2014).
Kearsey, M. J. (1998). The principles of QTL analysis (a minimal mathematics approach). Journal of Experimental Botany 49, 16191623.
Keeling, P. L. & Myers, A. M. (2010). Biochemistry and genetics of starch synthesis. Annual Review of Food Science and Technology 1, 271303.
Kunkeaw, S., Tangphatsornruang, S., Smith, D. R. & Triwitayakorn, K. (2010). Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breeding 129, 112115.
Lark, K. G., Chase, K., Adler, F., Mansur, L. M. & Orf, J. H. (1995). Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proceedings of the National Academy of Sciences of the United States of America 92, 46564660.
Lou, P., Zhao, J., Kim, J. S., Shen, S., Del Carpio, D. P., Song, X., Jin, M., Vreugdenhil, D., Wang, X., Koornneef, M. & Bonnema, G. (2007). Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa . Journal of Experimental Botany 58, 40054016.
Malosetti, M., Voltas, J., Romagosa, I., Ullrich, S. E. & Van Eeuwijk, F. A. (2004). Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137, 139145.
Ntawuruhunga, P. & Dixon, A. G. O. (2010). Quantitative variation and interrelationship between factors influencing cassava yield. Journal of Applied Biosciences 26, 15941602.
Okogbenin, E. & Fregene, M. (2002). Genetic analysis and QTL mapping of early root bulking in an F 1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics 106, 5866.
Okogbenin, E. & Fregene, M. (2003). Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics 107, 14521462.
Okogbenin, E., Marin, J. & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica 147, 433440.
Okogbenin, E., Marin, J. & Fregene, M. (2008). Quantitative trait loci analysis for early yield in a pseudo F2 population of cassava. African Journal of Biotechnology 7, 131138.
Onwueme, I. C. (2002). Cassava in Asia and the Pacific. In Cassava: Biology, Production and Utilization (Eds Hillocks, R. J., Thresh, J. M. & Bellotti, A.), pp. 5565. Wallingford, UK: CABI Publishing.
Paterson, A. H., Damon, S., Hewitt, J. D., Zamir, D., Rabinowitch, H. D., Lincoln, S. E., Lander, E. S. & Tanksley, S. D. (1991). Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127, 181197.
Redoña, E. D. & Mackill, D. J. (1998). Quantitative trait locus analysis for rice panicle and grain characteristics. Theoretical and Applied Genetics 96, 957963.
Shi, J., Li, R., Qiu, D., Jiang, C., Long, Y., Morgan, C., Bancroft, I., Zhao, J. & Meng, J. (2009). Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus . Genetics 182, 851861.
Song, X., Han, Y., Teng, W., Sun, G. & Li, W. (2010). Identification of QTL underlying somatic embryogenesis capacity of immature embryos in soybean (Glycine max (L.) Merr.). Plant Cell Reports 29, 125131.
SPSS (2008). SPSS Statistics for Windows Version 17·0. Chicago, IL, USA: SPSS Inc.
Sraphet, S., Boonchanawiwat, A., Thanyasiriwat, T., Boonseng, O., Tabata, S., Sasamoto, S., Shirasawa, K., Isobe, S., Lightfoot, D. A., Tangphatsornruang, S. & Triwitayakorn, K. (2011). SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics 122, 11611170.
Sun, W., Zhang, Y., Le, W. & Zhang, H. (2009). Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.). Frontiers of Agriculture in China 3, 6774.
Swamy, B. P. M. & Sarla, N. (2011). Meta-analysis of yield QTLs derived from inter-specific crosses of rice reveals consensus regions and candidate genes. Plant Molecular Biology Reporter 29, 663680.
Thanyasiriwat, T., Sraphet, S., Whankaew, S., Boonseng, O., Bao, J., Lightfoot, D. A., Tangphatsornruang, S. & Triwitayakorn, K. (2014). Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (Manihot esculenta Crantz). Plant Biology 16, 197207.
Timmerman-Vaughan, G. M., Mills, A., Whitfield, C., Frew, T., Butler, R., Murray, S., Lakeman, M., McCallum, J., Russell, A. & Wilson, D. (2005). Linkage mapping of QTL for seed yield, yield components, and developmental traits in pea. Crop Science 45, 13361344.
Van Ooijen, J. (1992). Accuracy of mapping quantitative trait loci in autogamous species. Theoretical and Applied Genetics 84, 803811.
Van Ooijen, J. W., Boer, M. P., Jansen, R. C. & Maliepaard, C. (2002). MapQTL 4·0, Software for the Calculation of QTL Positions on Genetic Maps (User Guide). Wageningen, the Netherlands: Plant Research International.
Voorrips, R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93, 7778.
Wang, M. & Goldman, I. (1997). Transgressive segregation and reciprocal effect for free folic acid content in a red beet (Beta vulgaris L.) population. Euphytica 96, 317321.
Whankaew, S., Poopear, S., Kanjanawattanawong, S., Tangphatsornruang, S., Boonseng, O., Lightfoot, D. A. & Triwitayakorn, K. (2011). A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics 12, 266. DOI: 10.1186/1471-2164-12-266
Xiao, J., Grandillo, S., Ahn, S. N., McCouch, S. R., Tanksley, S. D., Li, J. & Yuan, L. (1996). Genes from wild rice improve yield. Nature 384, 223224.
Zhang, Y., Li, Y. X., Wang, Y., Liu, Z. Z., Liu, C., Peng, B., Tan, W. W., Wang, D., Shi, Y. S., Sun, B. C., Song, Y. C., Wang, T. Y. & Li, Y. (2010). Stability of QTL across environments and QTL-by-environment interactions for plant and ear height in maize. Agricultural Sciences in China 9, 14001412.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed