Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T00:23:01.423Z Has data issue: false hasContentIssue false

A generic property of phase-type representations

Published online by Cambridge University Press:  14 July 2016

Christian Commault*
Affiliation:
Laboratoire d’Automatique de Grenoble
Stéphane Mocanu*
Affiliation:
Laboratoire d’Automatique de Grenoble
*
Postal address: Laboratoire d’Automatique de Grenoble UMR 5528, INPG-CNRS-UJF, ENSIEG, BP 46, 38402 Saint Martin d’Hères Cedex, France.
Postal address: Laboratoire d’Automatique de Grenoble UMR 5528, INPG-CNRS-UJF, ENSIEG, BP 46, 38402 Saint Martin d’Hères Cedex, France.

Abstract

In this paper we introduce the notion of structured phase-type representations. A structured representation corresponds to a class of phase-type representations having the same graph but free parameters. We define a generic property for such a representation. Then we prove that, generically, an irreducible structured representation of a given order corresponds to a distribution whose degree is equal to this order.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Commault, C., and Chemla, J.-P. (1993). On dual and minimal phase type representations. Commun. Statist. Stoch. Models 9, 421434.Google Scholar
[2]. Commault, C., and Chemla, J.-P. (1996). An invariant of representations of phase-type distributions and some applications. J. Appl. Prob. 33, 368381.Google Scholar
[3]. Commault, C., Dion, J., and Perez, A. (1991). Disturbance rejection for structured systems. IEEE Trans. Automatic Control 36, 884887.CrossRefGoogle Scholar
[4]. Cumani, A. (1982). On the canonical representation of homogenous Markov processes modelling failure-time distributions. Microelectron. Reliab. 22, 583602.CrossRefGoogle Scholar
[5]. Latouche, G., and Ramaswami, V. (1993). A logarithmic reduction algorithm for quasi-birth–death processes. J. Appl. Prob. 30, 650674.CrossRefGoogle Scholar
[6]. Lin, C. (1974). Structural controllability. IEEE Trans. Automatic Control 19, 201208.Google Scholar
[7]. Maier, R. S. (1993). Phase-type distributions and the structure of finite Markov chains. J. Comput. Appl. Math. 46, 449453.Google Scholar
[8]. Mocanu, S., and Commault, C. (1999). Sparse representations of phase-type distributions. Commun. Statist. Stoch. Models 15, 759778.CrossRefGoogle Scholar
[9]. Murota, K. (1987). Systems Analysis by Graphs and Matroids. Springer, New York.Google Scholar
[10]. Neuts, M. (1981). Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach. The Johns Hopkins University Press, Baltimore, MD.Google Scholar
[11]. O’Cinneide, C. A. (1989). On non-uniqueness of representations of phase-type distributions. Commun. Statist. Stoch. Models 5, 247259.Google Scholar
[12]. O’Cinneide, C. A. (1990). Characterization of phase-type distributions. Commun. Statist. Stoch. Models 6, 157.CrossRefGoogle Scholar
[13]. O’Cinneide, C. A. (1991). Phase-type distributions and invariant polytopes. Adv. Appl. Prob. 23, 515535.Google Scholar
[14]. O’Cinneide, C. A. (1999). Phase-type distributions: open problems and a few properties. Commun. Statist. Stoch. Models 15, 731757.CrossRefGoogle Scholar
[15]. Ramaswami, V. (1990). A duality theorem for matrix paradigms in queueing theory. Commun. Statist. Stoch. Models 6, 151161.Google Scholar
[16]. Van der Waerden, B. (1970). Algebra. Ungar, New York.Google Scholar
[17]. Van der Woude, J. (1991). On the structure at infinity of structured systems. Linear Algebra Appl. 148, 145169.Google Scholar
[18]. Wonham, W. (1985). Linear Multivariable Control. A Geometric Approach. Springer, New York.CrossRefGoogle Scholar