Skip to main content Accessibility help

On the genealogy of large populations

  • J. F. C. Kingman


A new Markov chain is introduced which can be used to describe the family relationships among n individuals drawn from a particular generation of a large haploid population. The properties of this process can be studied, simultaneously for all n, by coupling techniques. Recent results in neutral mutation theory are seen as consequences of the genealogy described by the chain.



Hide All
Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theoret. Popn Biol. 3, 87112 and 376.
Ewens, W. J. (1979) Mathematical Population Genetics. Springer-Verlag, Berlin.
Felsenstein, J. (1975) A pain in the torus: some difficulties with models of isolation by distance. Amer. Naturalist 109, 359368.
Fleischmann, K. and Siegmund-Schultze, R. (1978) An invariance principle for reduced family trees of critical spatially homogeneous branching processes. Serdica 4, 111134.
Kallenberg, O. (1977) Stability of critical cluster fields. Math. Nachr. 77, 743.
Kendall, D. G. (1975) Some problems in mathematical genealogy. In Perspectives in Probability and Statistics , ed. Gani, J., Distributed by Academic Press, London for the Applied Probability Trust, Sheffield, 325345.
Kerstan, J., Matthes, K. and Mecke, J. (1978) Infinitely Divisible Point Processes. Wiley, Chichester.
Kesten, H. (1980) The number of distinguishable alleles according to the Ohta-Kimura model of neutral mutation. J. Math. Biol. 10, 167187.
Kimura, M. and Ohta, T. (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Nat. Acad. Sci. 75, 28682872.
Kingman, J. F. C. (1976) Coherent random walks arising in some genetical models. Proc. R. Soc. London A 351, 1931.
Kingman, J. F. C. (1978a) Random partitions in population genetics. Proc. R. Soc. London A 361, 120.
Kingman, J. F. C. (1978b) The representation of partition structures. J. Lond. Math. Soc. 18, 374380.
Kingman, J. F. C. (1978c) The dynamics of neutral mutation. Proc. R. Soc. London A 363, 135146.
Kingman, J. F. C. (1980) Mathematics of Genetic Diversity. Society for Industrial and Applied Mathematics, Washington.
Malecot, G. (1969) The Mathematics of Heredity. Freeman, San Francisco.
Meyer, P. A. (1966) Probabilités et Potentiel. Hermann, Paris.
Moran, P. A. P. (1958) Random processes in genetics. Proc. Camb. Phil. Soc. 54, 6072.
Moran, P. A. P. (1975) Wandering distributions and the electrophoretic profile. Theoret. Popn Biol. 8, 318330.
Nelson, E. (1959) Regular probability measures on function space. Ann. Math. 69, 630643.
Ohta, T. and Kimura, M. (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22, 201204.
Rosenblatt, M. (1974) Random Processes. Springer-Verlag, New York.
Sawyer, S. (1977) Asymptotic properties of the equilibrium probability of identity in a geographically structured population. Adv. Appl. Prob. 9, 268282.
Singh, K. S., Lewontin, R. C. and Felton, A. A. (1976) Genetic heterogeneity within electrophoretic ‘alleles’ of xanthine dehydrogenase in Drosophila pseudoobscura. Genetics 84, 609629.
Wachter, K. W., Hammel, ?. A. and Laslett, P. (1978) Statistical Studies of Historical Social Structure. Academic Press, New York.


On the genealogy of large populations

  • J. F. C. Kingman


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.