Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T13:18:51.863Z Has data issue: false hasContentIssue false

On the geometric growth in a class of homogeneous multitype Markov chain

Published online by Cambridge University Press:  14 July 2016

M. González*
Affiliation:
University of Extremadura
R. Martínez*
Affiliation:
University of Extremadura
M. Mota*
Affiliation:
University of Extremadura
*
Postal address: Departamento de Matemáticas, Facultad de Ciencias, Avda. Elvas s/n, 06071 Badajoz, Spain.
Postal address: Departamento de Matemáticas, Facultad de Ciencias, Avda. Elvas s/n, 06071 Badajoz, Spain.
Postal address: Departamento de Matemáticas, Facultad de Ciencias, Avda. Elvas s/n, 06071 Badajoz, Spain.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate the geometric growth of homogeneous multitype Markov chains whose states have nonnegative integer coordinates. Such models are considered in a situation similar to the supercritical case for branching processes. Finally, our general theoretical results are applied to a class of controlled multitype branching process in which the control is random.

Type
Research Papers
Copyright
© Applied Probability Trust 2005 

References

González, M., Martı´nez, R. and Mota, M. (2005). On the unlimited growth of a class of homogeneous multitype Markov chains. Bernoulli 11, 559570.Google Scholar
Klebaner, F. (1984). Geometric rate of growth in population-size-dependent branching processes. J. Appl. Prob. 21, 4049.Google Scholar
Klebaner, F. (1985). A limit theorem for population-size-dependent branching processes. J. Appl. Prob. 22, 4857.Google Scholar
Klebaner, F. (1989). Geometric growth in near-supercritical population size dependent multitype Galton–Watson processes. Ann. Prob. 17, 14661477.Google Scholar
Mode, C. J. (1971). Multitype Branching Processes. Elsevier, New York.Google Scholar
Seneta, E. (1981). Nonnegative Matrices and Markov Chains, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Sevastjanov, B. A. and Zubkov, A. M. (1974). Controlled branching processes. Theor. Prob. Appl. 19, 1424.Google Scholar
Von Bahr, B. and Esseen, C. G. (1965). Inequalities for the rth absolute moment of a sum of random variables. Anal. Math. Statist. 36, 299303.CrossRefGoogle Scholar