Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-vbn2q Total loading time: 0.327 Render date: 2021-08-05T03:27:27.798Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Fetal programming of overweight through the microbiome: boys are disproportionately affected

Published online by Cambridge University Press:  29 June 2015

A. L. Kozyrskyj
Affiliation:
Department of Pediatrics, University of Alberta, Edmonton, AB, Canada School of Public Health, University of Alberta, Edmonton, AB, Canada Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
R. Kalu
Affiliation:
Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
P. T. Koleva
Affiliation:
Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
S. L. Bridgman
Affiliation:
Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
Corresponding
E-mail address:

Abstract

Maternal and childhood obesity in pregnancy are worrisome public health issues facing our world today. New gene sequencing methods have advanced our knowledge of the disruptive effect of birth interventions and postnatal exposures on the maturation of gut microbiota and immunity during infancy. Yet, little is known about the impact of maternal pregnancy overweight on gut microbes and related processes, and how this may affect overweight risk in offspring. To address this gap in knowledge, we surveyed human studies for evidence in children, infants and pregnant women to piece together the limited literature and generate hypotheses for future investigation. From this literature, we learned that higher Lactobacillus yet lower Bacteroides spp. colonization of gut microbiota within 3 months of birth predicted risk for infant and child overweight. The abundance of bifidobacteria and staphylococci also appeared to play a role in the association with overweight, as did infant fecal immunoglobulin A levels, glycoproteins of the gut immune system that are acquired from breast milk and produced by the infant. We proposed that pregnancy overweight influences the compositional structure of gut microbiota in infants through vertical transfer of microbiota and/or their metabolites during pregnancy, delivery and breastfeeding. Finally, we brought forward emerging evidence on sex dimorphism, as well as ethnic and geographic variation, in reported associations between maternal overweight-induced gut microbiota dysbiosis and overweight risk.

Type
Review
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wadhwa, PD, Buss, C, Entringer, S, Swanson, JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009; 27, 358368.CrossRefGoogle ScholarPubMed
2. Barker, DJ. The origins of the developmental origins theory. J Intern Med. 2007; 261, 412417.CrossRefGoogle ScholarPubMed
3. Azad, MB, Kozyrskyj, AL. Perinatal programming of asthma: the role of gut microbiota. Clin Dev Immunol. 2012; 2012, 932072.CrossRefGoogle ScholarPubMed
4. Ogden, CL, Carroll, MD, Kit, BK, Flegal, KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA. 2012; 307, 483490.CrossRefGoogle Scholar
5. Shields, M. Overweight and obesity among children and youth. Health Rep. 2006; 17, 2742.Google ScholarPubMed
6. Serdula, MK, Ivery, D, Coates, RJ, et al. Do obese children become obese adults? A review of the literature. Prev Med. 1993; 22, 167177.CrossRefGoogle ScholarPubMed
7. Weng, SF, Redsell, SA, Swift, JA, Yang, M, Glazebrook, CP. Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch Dis Child. 2012; 97, 10191026.CrossRefGoogle ScholarPubMed
8. Begum, F, Colman, I, McCargar, LJ, Bell, RC. Gestational weight gain and early postpartum weight retention in a prospective cohort of alberta women. J Obstet Gynaecol Can. 2012; 34, 637647.CrossRefGoogle Scholar
9. Yogev, Y, Catalano, PM. Pregnancy and obesity. Obstet Gynecol Clin North Am. 2009; 36, 285300.CrossRefGoogle ScholarPubMed
10. Cassidy-Bushrow, AE, Peters, RM, Johnson, DA, Li, J, Rao, DS. Vitamin D nutritional status and antenatal depressive symptoms in African American women. J Womens Health (Larchmt). 2012; 21, 11891195.CrossRefGoogle ScholarPubMed
11. Poston, L. Gestational weight gain: influences on the long-term health of the child. Curr Opin Clin Nutr Metab Care. 2012; 15, 252257.CrossRefGoogle ScholarPubMed
12. Heslehurst, N, Simpson, H, Ells, LJ, et al. The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: a meta-analysis. Obes Rev. 2008; 9, 635683.CrossRefGoogle ScholarPubMed
13. Backhed, F, Ding, H, Wang, T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004; 101, 1571815723.CrossRefGoogle ScholarPubMed
14. Angelakis, E, Armougom, F, Million, M, Raoult, D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012; 7, 91109.CrossRefGoogle ScholarPubMed
15. Flint, HJ, Scott, KP, Louis, P, Duncan, SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012; 9, 577589.CrossRefGoogle ScholarPubMed
16. Brahe, LK, Astrup, A, Larsen, LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev. 2013; 14, 950959.CrossRefGoogle ScholarPubMed
17. Le Chatelier, E, Nielsen, T, Qin, J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500, 541546.CrossRefGoogle ScholarPubMed
18. Ridaura, VK, Faith, JJ, Rey, FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013; 341, 1241214.CrossRefGoogle ScholarPubMed
19. Armougom, F, Henry, M, Vialettes, B, Raccah, D, Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009; 4, 18.CrossRefGoogle ScholarPubMed
20. Koleva, PT, Bridgman, SL, Kozyrskyj, AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. 2015; 7, 22372260.CrossRefGoogle ScholarPubMed
21. Karlsson, CL, Onnerfalt, J, Xu, J, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012; 20, 22572261.CrossRefGoogle ScholarPubMed
22. Bervoets, L, Van, HK, Kortleven, I, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013; 5, 10.CrossRefGoogle ScholarPubMed
23. Zhang, H, DiBaise, JK, Zuccolo, A, et al. Human gut microbiota in obesity and after gastric bypass. Obesity (Silver Spring). 2010; 18, 190195.Google Scholar
24. Payne, AN, Chassard, C, Zimmermann, M, et al. The metabolic activity of gut microbiota of obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr Diabetes. 2011; e12, 18.Google Scholar
25. Penders, J, Thijs, C, Vink, C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006; 118, 511521.CrossRefGoogle ScholarPubMed
26. Azad, MB, Konya, T, Maughan, H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013; 185, 385394.CrossRefGoogle ScholarPubMed
27. Kaplan, JL, Walker, WA. Early gut colonization and subsequent obesity risk. Curr Opin Clin Nutr Metab Care. 2012; 15, 278284.CrossRefGoogle ScholarPubMed
28. Luoto, R, Kalliomaki, M, Laitinen, K, et al. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J Pediatr Gastroenterol Nutr. 2011; 52, 9095.CrossRefGoogle Scholar
29. Vael, C, Verhulst, SL, Nelen, V, Goossens, H, Desager, KN. Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathog. 2011; 3, 8.CrossRefGoogle Scholar
30. Kalliomaki, M, Collado, MC, Salminen, S, Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008; 87, 534538.Google ScholarPubMed
31. Scheepers, LE, Penders, J, Mbakwa, CA, et al. The intestinal microbiota composition and weight development in children: the KOALA Birth Cohort Study. Int J Obes (Lond). 2015; 39, 1625.CrossRefGoogle ScholarPubMed
32. White, RA, Bjornholt, JV, Baird, DD, et al. Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol. 2013; 9, e1003042.CrossRefGoogle ScholarPubMed
33. Koleva, PT, Bridgman, SL, Kozyrskyj, AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. 2015; 7, 22372260.CrossRefGoogle ScholarPubMed
34. Eggesbo, M, Moen, B, Peddada, S, et al. Development of gut microbiota in infants not exposed to medical interventions. APMIS. 2011; 119, 1735.Google Scholar
35. Jakobsson, HE, Abrahamsson, TR, Jenmalm, MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014; 63, 559566.CrossRefGoogle ScholarPubMed
36. Brandt, K, Taddei, CR, Takagi, EH, et al. Establishment of the bacterial fecal community during the first month of life in Brazilian newborns. Clinics (Sao Paulo). 2012; 67, 113123.CrossRefGoogle ScholarPubMed
37. Palmer, C, Bik, EM, DiGiulio, DB, Relman, DA, Brown, PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5, e177.CrossRefGoogle ScholarPubMed
38. Rautava, S, Collado, MC, Salminen, S, Isolauri, E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology. 2012; 102, 178184.CrossRefGoogle ScholarPubMed
39. Jimenez, E, Marin, ML, Martin, R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008; 159, 187193.CrossRefGoogle ScholarPubMed
40. Gosalbes, MJ, Llop, S, Valles, Y, et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013; 43, 198211.CrossRefGoogle ScholarPubMed
41. Kollmann, TR, Levy, O, Montgomery, RR, Goriely, S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity. 2012; 37, 771783.CrossRefGoogle ScholarPubMed
42. Brandtzaeg, P. Homeostatic impact of indigenous microbiota and secretory immunity. Benef Microbes. 2010; 1, 211227.CrossRefGoogle ScholarPubMed
43. Mirpuri, J, Raetz, M, Sturge, CR, et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes. 2014; 5, 2839.CrossRefGoogle ScholarPubMed
44. Kohler, H, Donarski, S, Stocks, B, et al. Antibacterial characteristics in the feces of breast-fed and formula-fed infants during the first year of life. J Pediatr Gastroenterol Nutr. 2002; 34, 188193.CrossRefGoogle ScholarPubMed
45. Sjogren, YM, Tomicic, S, Lundberg, A, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy. 2009; 39, 18421851.CrossRefGoogle ScholarPubMed
46. Kukkonen, K, Kuitunen, M, Haahtela, T, et al. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr Allergy Immunol. 2010; 21(1 Pt 1), 6773.CrossRefGoogle ScholarPubMed
47. Pallaro, A, Barbeito, S, Taberner, P, et al. Total salivary IgA, serum C3c and IgA in obese school children. J Nutr Biochem. 2002; 13, 539.CrossRefGoogle ScholarPubMed
48. Chandel, DS, Braileanu, GT, Chen, JH, Chen, HH, Panigrahi, P. Live colonocytes in newborn stool: surrogates for evaluation of gut physiology and disease pathogenesis. Pediatr Res. 2011; 70, 153158.CrossRefGoogle ScholarPubMed
49. Patro, B, Liber, A, Zalewski, B, et al. Maternal and paternal body mass index and offspring obesity: a systematic review. Ann Nutr Metab. 2013; 63, 3241.CrossRefGoogle ScholarPubMed
50. Paliy, O, Piyathilake, CJ, Kozyrskyj, A, et al. Excess body weight during pregnancy and offspring obesity: potential mechanisms. Nutrition. 2014; 30, 245251.CrossRefGoogle ScholarPubMed
51. Cox, LM, Blaser, MJ. Pathways in microbe-induced obesity. Cell Metab. 2013; 17, 883894.CrossRefGoogle ScholarPubMed
52. Persaud, RR, Azad, MB, Chari, RS, et al. Perinatal antibiotic exposure of neonates in Canada and associated risk factors: a population-based study. J Matern Fetal Neonatal Med. 2014; 14, 16.Google Scholar
53. Hakansson, S, Kallen, K. High maternal body mass index increases the risk of neonatal early onset group B streptococcal disease. Acta Paediatr. 2008; 97, 13861389.CrossRefGoogle ScholarPubMed
54. Koren, O, Goodrich, JK, Cullender, TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012; 150, 470480.CrossRefGoogle ScholarPubMed
55. Collado, MC, Isolauri, E, Laitinen, K, Salminen, S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008; 88, 894899.Google ScholarPubMed
56. Santacruz, A, Collado, MC, Garcia-Valdes, L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010; 104, 8392.CrossRefGoogle ScholarPubMed
57. Collado, MC, Laitinen, K, Salminen, S, Isolauri, E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 2012; 72, 7785.CrossRefGoogle ScholarPubMed
58. Collado, MC, Isolauri, E, Laitinen, K, Salminen, S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010; 92, 10231030.CrossRefGoogle ScholarPubMed
59. Galley, JD, Bailey, M, Kamp, DC, Schoppe-Sullivan, S, Christian, LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One. 2014; 9, e113026.CrossRefGoogle ScholarPubMed
60. Solt, I. The human microbiome and the great obstetrical syndromes: a new frontier in maternal-fetal medicine. Best Pract Res Clin Obstet Gynaecol. 2015; 29, 165175.CrossRefGoogle ScholarPubMed
61. Vitali, B, Cruciani, F, Baldassarre, ME, et al. Dietary supplementation with probiotics during late pregnancy: outcome on vaginal microbiota and cytokine secretion. BMC Microbiol. 2012; 12, 236.CrossRefGoogle ScholarPubMed
62. Konstantinov, SR, van der Woude, CJ, Peppelenbosch, MP. Do pregnancy-related changes in the microbiome stimulate innate immunity? Trends Mol Med. 2013; 19, 454459.CrossRefGoogle ScholarPubMed
63. Gohir, W, Ratcliffe, EM, Sloboda, DM. Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatr Res. 2015; 77, 196204.CrossRefGoogle ScholarPubMed
64. Cho, CE, Norman, M. Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol. 2013; 208, 249254.CrossRefGoogle ScholarPubMed
65. Priyadarshini, M, Thomas, A, Reisetter, AC, et al. Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns. Transl Res. 2014; 164, 153157.CrossRefGoogle ScholarPubMed
66. Mischke, M, Plosch, T. More than just a gut instinct-the potential interplay between a baby’s nutrition, its gut microbiome, and the epigenome. Am J Physiol Regul Integr Comp Physiol. 2013; 304, R1065R1069.CrossRefGoogle Scholar
67. Vidal, AC, Murphy, SK, Murtha, AP, et al. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring. Int J Obes (Lond). 2013; 37, 907913.CrossRefGoogle ScholarPubMed
68. Xu, P, Li, M, Zhang, J, Zhang, T. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol. 2012; 12, 283.CrossRefGoogle ScholarPubMed
69. Ip, S, Chung, M, Raman, G, Trikalinos, TA, Lau, J. A summary of the Agency for Healthcare Research and Quality’s evidence report on breastfeeding in developed countries. Breastfeed Med. 2009; 4(Suppl. 1), S17S30.CrossRefGoogle ScholarPubMed
70. Holscher, HD, Faust, KL, Czerkies, LA, et al. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. J Parenter Enteral Nutr. 2012; 36(Suppl.), 95S105S.CrossRefGoogle Scholar
71. Aagaard, K, Riehle, K, Ma, J, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One. 2012; 7, e36466.CrossRefGoogle ScholarPubMed
72. Robinson, EL, Thompson, WL. Effect of weight gain of the addition of Lactobacillus acidophilus to the formula of newborn infants. J Pediatr. 1952; 41, 395398.CrossRefGoogle ScholarPubMed
73. Neuman, H, Debelius, JW, Knight, R, Koren, O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015; February 19 [Epub], pii: fuu010.CrossRefGoogle ScholarPubMed
74. Dominianni, C, Sinha, R, Goedert, JJ, et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015; 10, e0124599.CrossRefGoogle ScholarPubMed
75. Ajslev, TA, Andersen, CS, Gamborg, M, Sorensen, TI, Jess, T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond). 2011; 35, 522529.CrossRefGoogle ScholarPubMed
76. Azad, MB, Bridgman, SL, Becker, AB, Kozyrskyj, AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014; 38, 12901298.CrossRefGoogle ScholarPubMed
77. Bailey, LC, Forrest, CB, Zhang, P, et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014; 168, 10631069.CrossRefGoogle ScholarPubMed
78. Murphy, R, Stewart, AW, Braithwaite, I, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond). 2014; 38, 11151119.CrossRefGoogle ScholarPubMed
79. Trasande, L, Blustein, J, Liu, M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond). 2013; 37, 1623.CrossRefGoogle ScholarPubMed
80. Cutting, TM, Fisher, JO, Grimm-Thomas, K, Birch, LL. Like mother, like daughter: familial patterns of overweight are mediated by mothers’ dietary disinhibition. Am J Clin Nutr. 1999; 69, 608613.Google ScholarPubMed
81. Faith, MS, Heo, M, Kral, TV, Sherry, B. Compliant eating of maternally prompted food predicts increased body mass index z-score gain in girls: results from a population-based sample. Child Obes. 2013; 9, 427436.CrossRefGoogle ScholarPubMed
82. Suzuki, K, Kondo, N, Sato, M, et al. Gender differences in the association between maternal smoking during pregnancy and childhood growth trajectories: multilevel analysis. Int J Obes (Lond). 2011; 35, 5359.CrossRefGoogle ScholarPubMed
83. Zheng, JS, Liu, H, Li, J, et al. Exclusive breastfeeding is inversely associated with risk of childhood overweight in a large Chinese cohort. J Nutr. 2014; 144, 14541459.CrossRefGoogle Scholar
84. Kalu, R. Maternal overweight prior to pregnancy and its impact on the infant gut microbiome and subsequent child overweight risk. University of Alberta. 2014.Google Scholar
85. Hesla, HM, Stenius, F, Jaderlund, L, et al. Impact of lifestyle on the gut microbiota of healthy infants and their mothers – the ALADDIN birth cohort. FEMS Microbiol Ecol. 2014; 90, 791801.CrossRefGoogle ScholarPubMed
86. Koleva, PT, Kim, JS, Guttman, DS, et al. Bacterial composition of the infant gut is shaped by maternal prenatal weight. International Human Microbiome Congress, Luxembourg, 2015.Google Scholar
87. Fallani, M, Young, D, Scott, J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 2010; 51, 7784.CrossRefGoogle ScholarPubMed
88. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486, 207214.CrossRefGoogle ScholarPubMed
89. Yatsunenko, T, Rey, FE, Manary, MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486, 222227.Google ScholarPubMed
90. Lozupone, CA, Stombaugh, J, Gonzalez, A, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013; 23, 17041714.CrossRefGoogle ScholarPubMed
91. Lin, A, Bik, EM, Costello, EK, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One. 2013; 8, e53838.CrossRefGoogle ScholarPubMed
43
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fetal programming of overweight through the microbiome: boys are disproportionately affected
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fetal programming of overweight through the microbiome: boys are disproportionately affected
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fetal programming of overweight through the microbiome: boys are disproportionately affected
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *