Skip to main content Accessibility help
×
×
Home

Effects of infant formula composition on long-term metabolic health

  • M. Lemaire (a1) (a2), I. Le Huërou-Luron (a1) and S. Blat (a1)

Abstract

Early nutrition may have long-lasting metabolic impacts in adulthood. Even though breast milk is the gold standard, most infants are at least partly formula-fed. Despite obvious improvements, infant formulas remain perfectible to reduce the gap between breastfed and formula-fed infants. Improvements such as reducing the protein content, modulating the lipid matrix and adding prebiotics, probiotics and synbiotics, are discussed regarding metabolic health. Numerous questions remain to be answered on how impacting the infant formula composition may modulate the host metabolism and exert long-term benefits. Interactions between early nutrition (composition of human milk and infant formula) and the gut microbiota profile, as well as mechanisms connecting gut microbiota to metabolic health, are highlighted. Gut microbiota stands as a key actor in the nutritional programming but additional well-designed longitudinal human studies are needed.

Copyright

Corresponding author

*Address for correspondence: S. Blat, INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer (NuMeCan), 16 Le Clos, Saint-Gilles, 35590, France. (Email sophie.blat@inra.fr)

References

Hide All
1. World Health Organization (WHO). Media centre – obesity and overweight, 2016. Retrieved July 2017 from www.who.int/mediacentre/factsheets/fs311/en/.
2. Hales, CN, Barker, DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992; 35, 595601.
3. Mcmillen, IC, Robinson, JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005; 85, 571633.
4. Nauta, AJ, Ben Amor, K, Knol, J, Garssen, J, van der Beek, EM. Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr. 2013; 98, 586S593S.
5. Thompson, AL. Developmental origins of obesity: early feeding environments, infant growth, and the intestinal microbiome. Am J Hum Biol. 2012; 24, 350360.
6. Centers for Disease Control and Prevention (CDC). Breastfeeding report card 2016, 2016. Retrieved July 2017 from www.cdc.gov/breastfeeding/data/reportcard.htm.
7. Victora, CG, Bahl, R, Barros, AJ, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016; 387, 475490.
8. Wang, M, Monaco, MH, Donovan, SM. Impact of early gut microbiota on immune and metabolic development and function. Semin Fetal Neonatal Med. 2016; 21, 380387.
9. Johnson, CC, Ownby, DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res. 2017; 179, 6070.
10. Dominguez, PR. The study of postnatal and later development of the taste and olfactory systems using the human brain mapping approach: an update. Brain Res Bull. 2011; 84, 118124.
11. Nicklaus, S, Remy, E. Early origins of overeating: tracking between early food habits and later eating patterns. Curr Obes Rep. 2013; 2, 179184.
12. Mennella, JA. Ontogeny of taste preferences: basic biology and implications for health. Am J Clin Nutr. 2014; 99, 704S711S.
13. Mennella, JA, Reiter, AR, Daniels, LM. Vegetable and fruit acceptance during infancy: impact of ontogeny, genetics, and early experiences. Adv Nutr. 2016; 7, 211S219S.
14. Koletzko, B, Brands, B, Grote, V, et al. Long-term health impact of early nutrition: the power of programming. Ann Nutr Metab. 2017; 70, 161169.
15. Gruszfeld, D, Socha, P. Early nutrition and health: short- and long-term outcomes. World Rev Nutr Diet. 2013; 108, 3239.
16. Andersen, LG, Holst, C, Michaelsen, KF, Baker, JL, Sorensen, TI. Weight and weight gain during early infancy predict childhood obesity: a case-cohort study. Int J Obes. 2012; 36, 13061311.
17. Druet, C, Stettler, N, Sharp, S, et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol. 2012; 26, 1926.
18. Botton, J, Heude, B, Maccario, J, Ducimetiere, P, Charles, MA. Postnatal weight and height growth velocities at different ages between birth and 5 y and body composition in adolescent boys and girls. Am J Clin Nutr. 2008; 87, 17601768.
19. Chomtho, S, Wells, JC, Williams, JE, et al. Infant growth and later body composition: evidence from the 4-component model. Am J Clin Nutr. 2008; 87, 17761784.
20. Rolland-Cachera, MF, Deheeger, M, Maillot, M, Bellisle, F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes (Lond). 2006; 30, S11S17.
21. Ailhaud, G, Massiera, F, Weill, P, et al. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res. 2006; 45, 203236.
22. Dewey, KG, Heinig, MJ, Nommsen, LA, Peerson, JM, Lonnerdal, B. Growth of breast-fed and formula-fed infants from 0 to 18 months: the DARLING Study. Pediatrics. 1992; 89, 10351041.
23. Johnson, L, van Jaarsveld, CH, Llewellyn, CH, Cole, TJ, Wardle, J. Associations between infant feeding and the size, tempo and velocity of infant weight gain: SITAR analysis of the Gemini twin birth cohort. Int J Obes (Lond). 2014; 38, 980987.
24. Hawley, NL, Johnson, W, Nu’usolia, O, McGarvey, ST. The contribution of feeding mode to obesogenic growth trajectories in American Samoan infants. Pediatr Obes. 2014; 9, e1e13.
25. Imai, CM, Gunnarsdottir, I, Thorisdottir, B, Halldorsson, TI, Thorsdottir, I. Associations between infant feeding practice prior to six months and body mass index at six years of age. Nutrients. 2014; 6, 16081617.
26. Mihrshahi, S, Battistutta, D, Magarey, A, Daniels, LA. Determinants of rapid weight gain during infancy: baseline results from the NOURISH randomised controlled trial. BMC Pediatr. 2011; 11, 99.
27. Rzehak, P, Oddy, WH, Mearin, ML, et al. Infant feeding and growth trajectory patterns in childhood and body composition in young adulthood. Am J Clin Nutr. 2017; 106, 568580.
28. Bell, KA, Wagner, CL, Feldman, HA, Shypailo, RJ, Belfort, MB. Associations of infant feeding with trajectories of body composition and growth. Am J Clin Nutr. 2017; 106, 491498.
29. Arenz, S, Ruckerl, R, Koletzko, B, von Kries, R. Breast-feeding and childhood obesity – a systematic review. Int J Obes Relat Metab Disord. 2004; 28, 12471256.
30. Horta, BL, Loret de Mola, C, Victora, CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr. 2015; 104, 3037.
31. Rossiter, MD, Colapinto, CK, Khan, MK, et al. Breast, formula and combination feeding in relation to childhood obesity in Nova Scotia, Canada. Matern Child Health J. 2015; 19, 20482056.
32. Kramer, MS, Matush, L, Vanilovich, I, et al. A randomized breast-feeding promotion intervention did not reduce child obesity in Belarus. J Nutr. 2009; 139, 417S421S.
33. Coppi, S, Iacoponi, F, Fommei, C, Strambi, M. Growth trend during the first six months of life in male infants with different type of feeding. Minerva Pediatrica. 2013; 65, 5159.
34. van der Willik, EM, Vrijkotte, TG, Altenburg, TM, Gademan, MG, Kist-van Holthe, J. Exclusively breastfed overweight infants are at the same risk of childhood overweight as formula fed overweight infants. Arch Dis Child. 2015; 100, 932937.
35. Betoko, A, Charles, MA, Hankard, R, et al. Determinants of infant formula use and relation with growth in the first 4 months. Matern Child Nutr. 2014; 10, 267279.
36. Uwaezuoke, SN, Eneh, CI, Ndu, IK. Relationship between exclusive breastfeeding and lower risk of childhood obesity: a narrative review of published evidence. Clin Med Insights Pediatr. 2017; 11, doi:10.1177/1179556517690196.
37. Beyerlein, A, von Kries, R. Breastfeeding and body composition in children: will there ever be conclusive empirical evidence for a protective effect against overweight? Am J Clin Nutr. 2011; 94, 1772S1775S.
38. Ong, KK, Petry, CJ, Emmett, PM, et al. Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and plasma insulin-like growth factor-I levels. Diabetologia. 2004; 47, 10641070.
39. Owen, CG, Martin, RM, Whincup, PH, Smith, GD, Cook, DG. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am J Clin Nutr. 2006; 84, 10431054.
40. Hui, LL, Kwok, MK, Nelson, EAS, et al. The association of breastfeeding with insulin resistance at 17 years: prospective observations from Hong Kong’s “Children of 1997” birth cohort. Matern Child Nutr. 2018; 14, e12490.
41. Axelsson, IE, Ivarsson, SA, Raiha, NC. Protein intake in early infancy: effects on plasma amino acid concentrations, insulin metabolism, and growth. Pediatr Res. 1989; 26, 614617.
42. Manco, M, Alterio, A, Bugianesi, E, et al. Insulin dynamics of breast- or formula-fed overweight and obese children. J Am Coll Nutr. 2011; 30, 2938.
43. Lucas, A, Sarson, DL, Blackburn, AM, et al. Breast vs bottle: endocrine responses are different with formula feeding. Lancet. 1980; 1, 12671269.
44. Newgard, CB, An, J, Bain, JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9, 311326.
45. O’Sullivan, A, He, X, McNiven, EM, et al. Early diet impacts infant rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013; 12, 28332845.
46. Socha, P, Grote, V, Gruszfeld, D, et al. Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011; 94, 1776S1784S.
47. Wallensteen, M, Lindblad, BS, Zetterstrom, R, Persson, B. Acute C-peptide, insulin and branched chain amino acid response to feeding in formula and breast fed infants. Acta Paediatr Scand. 1991; 80, 143148.
48. Tikanoja, T, Simell, O, Viikari, M, Jarvenpaa, AL. Plasma amino acids in term neonates after a feed of human milk or formula. II. Characteristic changes in individual amino acids. Acta Paediatr Scand. 1982; 71, 391397.
49. Janas, LM, Picciano, MF, Hatch, TF. Indices of protein metabolism in term infants fed human milk, whey-predominant formula, or cow’s milk formula. Pediatrics. 1985; 75, 775784.
50. Wang, TJ, Larson, MG, Vasan, RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011; 17, 448453.
51. Roszkowska, R, Taranta-Janusz, K, Tenderenda-Banasiuk, E, Wasilewska, A. Increased circulating inflammatory markers may indicate that formula-fed children are at risk of atherosclerosis. Acta Paediatr. 2014; 103, e354e358.
52. Wilson, AC, Forsyth, JS, Greene, SA, et al. Relation of infant diet to childhood health: seven year follow up of cohort of children in Dundee infant feeding study. BMJ. 1998; 316, 2125.
53. Taittonen, L, Nuutinen, M, Turtinen, J, Uhari, M. Prenatal and postnatal factors in predicting later blood pressure among children: cardiovascular risk in young Finns. Pediatr Res. 1996; 40, 627632.
54. Ramirez-Silva, I, Rivera, JA, Trejo-Valdivia, B, et al. Breastfeeding status at age 3 months is associated with adiposity and cardiometabolic markers at age 4 years in mexican children. J Nutr. 2015; 145, 12951302.
55. Owen, CG, Whincup, PH, Odoki, K, Gilg, JA, Cook, DG. Infant feeding and blood cholesterol: a study in adolescents and a systematic review. Pediatrics. 2002; 110, 597608.
56. Wu, TC, Huang, IFs, Chen, YC, Chen, PH, Yang, LY. Differences in serum biochemistry between breast-fed and formula-fed infants. J Chin Med Assoc. 2011; 74, 511515.
57. Owen, CG, Whincup, PH, Cook, DG. Breast-feeding and cardiovascular risk factors and outcomes in later life: evidence from epidemiological studies. Proc Nutr Soc. 2011; 70, 478484.
58. Ronis, MJ, Chen, Y, Shankar, K, et al. Formula feeding alters hepatic gene expression signature, iron and cholesterol homeostasis in the neonatal pig. Physiol Genomics. 2011; 43, 12811293.
59. Izadi, V, Kelishadi, R, Qorbani, M, et al. Duration of breast-feeding and cardiovascular risk factors among Iranian children and adolescents: the CASPIAN III study. Nutrition. 2013; 29, 744751.
60. Martin, RM, Patel, R, Kramer, MS, et al. Effects of promoting longer term and exclusive breastfeeding on cardiometabolic risk factors at age 11.5 years: a cluster-randomized, controlled rrial. Circulation. 2014; 129, 321329.
61. Martin, RM, Ben-Shlomo, Y, Gunnell, D, et al. Breast feeding and cardiovascular disease risk factors, incidence, and mortality: the Caerphilly study. J Epidemiol Community Health. 2005; 59, 121129.
62. Hamosh, M. Bioactive factors in human milk. Pediatr Clin North Am. 2001; 48, 6986.
63. Schack-Nielsen, L, Michaelsen, KF. Advances in our understanding of the biology of human milk and its effects on the offspring. J Nutr. 2007; 137, 503S510S.
64. Gidrewicz, DA, Fenton, TR. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014; 14, 216.
65. Mace, K, Steenhout, P, Klassen, P, Donnet, A. Protein quality and quantity in cow’s milk-based formula for healthy term infants: past, present and future. Nestle Nutr Workshop Ser Pediatr Program. 2006; 58, 189203.
66. Alexy, U, Kersting, M, Sichert-Hellert, W, Manz, F, Schoch, G. Macronutrient intake of 3- to 36-month-old German infants and children: results of the DONALD Study. Dortmund Nutritional and Anthropometric Longitudinally Designed Study. Ann Nutr Metab. 1999; 43, 1422.
67. Heinig, MJ, Nommsen, LA, Peerson, JM, Lonnerdal, B, Dewey, KG. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: the DARLING Study. Am J Clin Nutr. 1993; 58, 152161.
68. Escribano, J, Luque, V, Ferre, N, et al. Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: the EU Childhood Obesity Programme. Int J Obes. 2012; 36, 548553.
69. Rolland-Cachera, MF, Deheeger, M, Akrout, M, Bellisle, F. Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. Int J Obes Relat Metab Disord. 1995; 19, 573578.
70. Gruszfeld, D, Weber, M, Gradowska, K, et al. Association of early protein intake and pre-peritoneal fat at five years of age: follow-up of a randomized clinical trial. Nutr Metab Cardiovasc Dis. 2016; 26, 824832.
71. Voortman, T, Braun, KV, Kiefte-de Jong, JC, et al. Protein intake in early childhood and body composition at the age of 6 years: The Generation R Study. Int J Obes (Lond). 2016; 40, 10181025.
72. Koletzko, B, Chourdakis, M, Grote, V, et al. Regulation of early human growth: impact on long-term health. Ann Nutr Metab. 2014; 65, 101109.
73. Savino, F, Fissore, MF, Grassino, EC, et al. Ghrelin, leptin and IGF-I levels in breast-fed and formula-fed infants in the first years of life. Acta Paediatr. 2005; 94, 531537.
74. Chellakooty, M, Juul, A, Boisen, KA, et al. A prospective study of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in 942 healthy infants: associations with birth weight, gender, growth velocity, and breastfeeding. J Clin Endocrinol Metab. 2006; 91, 820826.
75. Martin, RM, Holly, JM, Smith, GD, et al. Could associations between breastfeeding and insulin-like growth factors underlie associations of breastfeeding with adult chronic disease? The Avon Longitudinal Study of Parents and Children. Clin Endocrinol (Oxf). 2005; 62, 728737.
76. Hornell, A, Lagstrom, H, Lande, B, Thorsdottir, I. Protein intake from 0 to 18 years of age and its relation to health: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr Res. 2013; 57, doi: 10.3402/fnr.v57i0.21083.
77. Patro-Golab, B, Zalewski, BM, Kouwenhoven, SM, et al. Protein concentration in milk formula, growth, and later risk of obesity: a systematic review. J Nutr. 2016; 146, 551564.
78. Davis, AM, Harris, BJ, Lien, EL, Pramuk, K, Trabulsi, J. Alpha-lactalbumin-rich infant formula fed to healthy term infants in a multicenter study: plasma essential amino acids and gastrointestinal tolerance. Eur J Clin Nutr. 2008; 62, 12941301.
79. Sandstrom, O, Lonnerdal, B, Graverholt, G, Hernell, O. Effects of alpha-lactalbumin-enriched formula containing different concentrations of glycomacropeptide on infant nutrition. Am J Clin Nutr. 2008; 87, 921928.
80. Fazzolari-Nesci, A, Domianello, D, Sotera, V, Raiha, NC. Tryptophan fortification of adapted formula increases plasma tryptophan concentrations to levels not different from those found in breast-fed infants. J Pediatr Gastroenterol Nutr. 1992; 14, 456459.
81. Menezes, JS, Mucida, DS, Cara, DC, et al. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int Immunol. 2003; 15, 447455.
82. Koletzko, B, von Kries, R, Closa, R, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009; 89, 18361845.
83. Koletzko, B, Beyer, J, Brands, B, et al. Early influences of nutrition on postnatal growth. Nestle Nutr Inst Workshop Ser. 2013; 71, 1127.
84. Weber, M, Grote, V, Closa-Monasterolo, R, et al. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr. 2014; 99, 10411051.
85. Putet, G, Labaune, JM, Mace, K, et al. Effect of dietary protein on plasma insulin-like growth factor-1, growth, and body composition in healthy term infants: a randomised, double-blind, controlled trial (Early Protein and Obesity in Childhood (EPOCH) study). Br J Nutr. 2016; 115, 271284.
86. Koletzko, B, von Kries, R, Closa, R, et al. Can infant feeding choices modulate later obesity risk? Am J Clin Nutr. 2009; 89, 1502S1508S.
87. Greer, FR, Kleinman, RE. An infant formula with decreased weight gain and higher IQ: are we there yet? Am J Clin Nutr. 2014; 99, 757758.
88. Satue-Gracia, MT, Frankel, EN, Rangavajhyala, N, German, JB. Lactoferrin in infant formulas: effect on oxidation. J Agric Food Chem. 2000; 48, 49844990.
89. Fields, DA, Schneider, CR, Pavela, G. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity (Silver Spring). 2016; 24, 12131221.
90. Ballard, O, Morrow, AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013; 60, 4974.
91. Catli, G, Olgac Dundar, N, Dundar, BN. Adipokines in breast milk: an update. J Clin Res Pediatr Endocrinol. 2014; 6, 192201.
92. Badillo-Suarez, PA, Rodriguez-Cruz, M, Nieves-Morales, X. Impact of metabolic hormones secreted in human breast milk on nutritional programming in childhood obesity. J Mammary Gland Biol Neoplasia. 2017; 22, 171–191.
93. Donovan, SM. The role of lactoferrin in gastrointestinal and immune development and function: a preclinical perspective. J Pediatr. 2016; 173, S16S28.
94. Flachs, P, Rossmeisl, M, Bryhn, M, Kopecky, J. Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin Sci (Lond). 2009; 116, 116.
95. Oosting, A, Kegler, D, Boehm, G, et al. N-3 long-chain polyunsaturated fatty acids prevent excessive fat deposition in adulthood in a mouse model of postnatal nutritional programming. Pediatr Res. 2010; 68, 494499.
96. Oosting, A, Kegler, D, van de Heijning, BJ, Verkade, HJ, van der Beek, EM. Reduced linoleic acid intake in early postnatal life improves metabolic outcomes in adult rodents following a Western-style diet challenge. Nutr Res. 2015; 35, 800811.
97. Schipper, L, Bouyer, K, Oosting, A, Simerly, RB, van der Beek, EM. Postnatal dietary fatty acid composition permanently affects the structure of hypothalamic pathways controlling energy balance in mice. Am J Clin Nutr. 2013; 98, 13951401.
98. Massiera, F, Saint-Marc, P, Seydoux, J, et al. Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res. 2003; 44, 271279.
99. Patro-Golab, B, Zalewski, BM, Kolodziej, M, et al. Nutritional interventions or exposures in infants and children aged up to 3 years and their effects on subsequent risk of overweight, obesity and body fat: a systematic review of systematic reviews. Obes Rev. 2016; 17, 12451257.
100. Forsyth, JS, Willatts, P, Agostoni, C, et al. Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: follow up of a randomised controlled trial. BMJ. 2003; 326, 953.
101. Delplanque, B, Gibson, R, Koletzko, B, Lapillonne, A, Strandvik, B. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr. 2015; 61, 817.
102. Colombo, J, Jill Shaddy, D, Kerling, EH, Gustafson, KM, Carlson, SE. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) balance in developmental outcomes. Prostaglandins Leukot Essent Fatty Acids. 2017; 121, 5256.
103. European Commission. Commission Delegated Regulation (EU) 2016/127 of 25 September 2015 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as regards the specific compositional and information requirements for infant formula and follow-on formula and as regards requirements on information relating to infant and young child feeding. Official J Eur Union. 2016:L25/1.
104. Koletzko, B, Carlson, SE, van Goudoever, JB. Should infant formula provide both omega-3 DHA and omega-6 arachidonic acid? Ann Nutr Metab. 2015; 66, 137138.
105. Jasani, B, Simmer, K, Patole, SK, Rao, SC. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev. 2017; 3, CD000376.
106. Koletzko, B. Human milk lipids. Ann Nutr Metab. 2016; 69, 2840.
107. Hernell, O, Timby, N, Domellof, M, Lonnerdal, B. Clinical benefits of milk fat globule membranes for infants and children. J Pediatr. 2016; 173, S60S65.
108. Lopez, C, Cauty, C, Guyomarc’h, F. Organization of lipids in milks, infant milk formulas and various dairy products: role of technological processes and potential impacts. Dairy Sci Technol. 2015; 95, 863893.
109. Cilla, A, Diego Quintaes, K, Barbera, R, Alegria, A. Phospholipids in human milk and infant formulas: benefits and needs for correct infant nutrition. Crit Rev Food Sci Nutr. 2016; 56, 18801892.
110. Timby, N, Lonnerdal, B, Hernell, O, Domellof, M. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr Res. 2014; 76, 394400.
111. Lukoyanova, O, Borovik, T, Bushueva, T, et al. The lipid metabolism in infants fed formula supplemented with bovine milk fat and bovine milk fat globule membranes [abstract]. In Abstracts of the 50th Annual Meeting of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition; 2017, May 10–13; ESPGHAN, Prague; 2017. Abstract nr 576.
112. Oosting, A, Kegler, D, Wopereis, HJ, et al. Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatr Res. 2012; 72, 362369.
113. Oosting, A, van Vlies, N, Kegler, D, et al. Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br J Nutr. 2014; 111, 215226.
114. Baars, A, Oosting, A, Engels, E, et al. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. Br J Nutr. 2016; 115, 19301937.
115. Shek, L, Winokan, A, Abrahamse-Berkeveld, M, et al. An innovative infant milk formula with large, phospholipid-coated lipid droplets supports an adequate growth and is well-tolerated in healthy, term Asian infants [abstract]. In Abstracts of the 4th International Conference on Nutrition & Growth; 2017, March 2–4; N&G: Amsterdam; 2017. Abstract nr 71.
116. Gianni, ML, Roggero, P, Baudry, C, Le Ruyet, P, Mosca, F. Dairy lipids in infant formula: impact on growth and gastrointestinal tolerance in healthy infants [abstract]. In Abstracts of the 49th Annual Meeting of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition; 2016, May 25–28. ESPGHAN: Athens; 2016. Abstract nr 406.
117. Bayley, TM, Alasmi, M, Thorkelson, T, et al. Longer term effects of early dietary cholesterol level on synthesis and circulating cholesterol concentrations in human infants. Metabolism. 2002; 51, 2533.
118. Demmers, TA, Jones, PJ, Wang, Y, et al. Effects of early cholesterol intake on cholesterol biosynthesis and plasma lipids among infants until 18 months of age. Pediatrics. 2005; 115, 15941601.
119. Ostlund, RE Jr, Lin, X. Regulation of cholesterol absorption by phytosterols. Curr Atheroscler Rep. 2006; 8, 487491.
120. Claumarchirant, L, Matencio, E, Sanchez-Siles, LM, Alegria, A, Lagarda, MJ. Sterol composition in infant formulas and estimated intake. J Agric Food Chem. 2015; 63, 72457251.
121. Nommsen, LA, Lovelady, CA, Heinig, MJ, Lonnerdal, B, Dewey, KG. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: the DARLING Study. Am J Clin Nutr. 1991; 53, 457465.
122. Srinivasan, M, Laychock, SG, Hill, DJ, Patel, MS. Neonatal nutrition: metabolic programming of pancreatic islets and obesity. Exp Biol Med (Maywood). 2003; 228, 1523.
123. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012; 22, 11471162.
124. Bode, L. The functional biology of human milk oligosaccharides. Early Hum Dev. 2015; 91, 619622.
125. Jost, T, Lacroix, C, Braegger, C, Chassard, C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev. 2015; 73, 426437.
126. Chichlowski, M, German, JB, Lebrilla, CB, Mills, DA. The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Annu Rev Food Sci Technol. 2011; 2, 331351.
127. McGuire, MK, Meehan, CL, McGuire, MA, et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr. 2017; 105, 10861100.
128. Sela, DA, Mills, DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010; 18, 298307.
129. Yu, ZT, Chen, C, Newburg, DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013; 23, 12811292.
130. Aakko, J, Kumar, H, Rautava, S, et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef Microbes. 2017; 8, 563567.
131. Lewis, ZT, Totten, SM, Smilowitz, JT, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015; 3, 13.
132. Smith-Brown, P, Morrison, M, Krause, L, Davies, PS. Mothers secretor status affects development of childrens microbiota composition and function: a pilot study. PLoS One. 2016; 11, e0161211.
133. Wang, M, Li, M, Wu, S, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr. 2015; 60, 825833.
134. Holscher, HD, Davis, SR, Tappenden, KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr. 2014; 144, 586591.
135. Chichlowski, M, De Lartigue, G, German, JB, Raybould, HE, Mills, DA. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr. 2012; 55, 321327.
136. Kuntz, S, Rudloff, S, Kunz, C. Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr. 2008; 99, 462471.
137. Ruhaak, LR, Stroble, C, Underwood, MA, Lebrilla, CB. Detection of milk oligosaccharides in plasma of infants. Anal Bioanal Chem. 2014; 406, 57755784.
138. Goehring, KC, Kennedy, AD, Prieto, PA, Buck, RH. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One. 2014; 9, e101692.
139. Alderete, TL, Autran, C, Brekke, BE, et al. Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am J Clin Nutr. 2015; 102, 13811388.
140. Gibson, GR, Hutkins, R, Sanders, ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017; 14, 491502.
141. Braegger, C, Chmielewska, A, Decsi, T, et al. Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2011; 52, 238250.
142. Rao, S, Srinivasjois, R, Patole, S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med. 2009; 163, 755764.
143. Canfora, EE, Jocken, JW, Blaak, EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015; 11, 577591.
144. Priyadarshini, M, Thomas, A, Reisetter, AC, et al. Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns. Transl Res. 2014; 164, 153157.
145. Closa-Monasterolo, R, Gispert-Llaurado, M, Luque, V, et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr. 2013; 32, 918927.
146. Veereman-Wauters, G, Staelens, S, Van de Broek, H, et al. Physiological and bifidogenic effects of prebiotic supplements in infant formulae. J Pediatr Gastroenterol Nutr. 2011; 52, 763771.
147. Ashley, C, Johnston, WH, Harris, CL, et al. Growth and tolerance of infants fed formula supplemented with polydextrose (PDX) and/or galactooligosaccharides (GOS): double-blind, randomized, controlled trial. Nutr J. 2012; 11, 38.
148. Salvini, F, Riva, E, Salvatici, E, et al. A specific prebiotic mixture added to starting infant formula has long-lasting bifidogenic effects. J Nutr. 2011; 141, 13351339.
149. Simeoni, U, Berger, B, Junick, J, et al. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446. Environ Microbiol. 2016; 18, 21852195.
150. Newburg, DS, Ruiz-Palacios, GM, Altaye, M, et al. Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology. 2004; 14, 253263.
151. Puccio, G, Alliet, P, Cajozzo, C, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr. 2017; 64, 624631.
152. Steenhout, P, Sperisen, P, Martin, F-P, et al. Term infant formula supplemented with human milk oligosaccharides (2′fucosyllactose and lacto-N-neotetraose) shifts stool microbiota and metabolic signatures closer to that of breastfed infants. FASEB J. 2016; 30, 275.7.
153. Marriage, BJ, Buck, RH, Goehring, KC, Oliver, JS, Williams, JA. Infants fed a lower calorie formula with 2ʹFL show growth and 2ʹFL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr. 2015; 61, 649658.
154. Bode, L, Jantscher-Krenn, E. Structure-function relationships of human milk oligosaccharides. Adv Nutr. 2012; 3, 383S391S.
155. Hunt, KM, Foster, JA, Forney, LJ, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011; 6, e21313.
156. Cabrera-Rubio, R, Collado, MC, Laitinen, K, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012; 96, 544551.
157. Murphy, K, Curley, D, O’Callaghan, TF, et al. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep. 2017; 7, 40597.
158. Bergmann, H, Rodriguez, JM, Salminen, S, Szajewska, H. Probiotics in human milk and probiotic supplementation in infant nutrition: a workshop report. Br J Nutr. 2014; 112, 11191128.
159. Boix-Amoros, A, Collado, MC, Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol. 2016; 7, 492.
160. Pannaraj, PS, Li, F, Cerini, C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017; 171, 647654.
161. Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, 2001. Retrieved May 2017 from http://isappscience.org/wp-content/uploads/2015/12/FAO-WHO-2001-Probiotics-Report.pdf.
162. Hill, C, Guarner, F, Reid, G, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11, 506514.
163. Davis, EC, Wang, M, Donovan, SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes. 2017; 8, 143171.
164. Szajewska, H. What are the indications for using probiotics in children? Arch Dis Child. 2016; 101, 398403.
165. Hojsak, I, Szajewska, H, Canani, RB, et al. Probiotics for the prevention of nosocomial diarrhea in children. J Pediatr Gastroenterol Nutr. 2018; 66, 3–9.
166. Szajewska, H, Canani, RB, Guarino, A, et al. Probiotics for the prevention of antibiotic-associated diarrhea in children. J Pediatr Gastroenterol Nutr. 2016; 62, 495506.
167. Rinne, M, Kalliomaki, M, Salminen, S, Isolauri, E. Probiotic intervention in the first months of life: short-term effects on gastrointestinal symptoms and long-term effects on gut microbiota. J Pediatr Gastroenterol Nutr. 2006; 43, 200205.
168. Maldonado-Lobon, JA, Gil-Campos, M, Maldonado, J, et al. Long-term safety of early consumption of Lactobacillus fermentum CECT5716: A 3-year follow-up of a randomized controlled trial. Pharmacol Res. 2015; 95-96, 1219.
169. Scalabrin, D, Harris, C, Johnston, WH, Berseth, CL. Long-term safety assessment in children who received hydrolyzed protein formulas with Lactobacillus rhamnosus GG: a 5-year follow-up. Eur J Pediatr. 2017; 176, 217224.
170. Endo, A, Prtty, A, Kalliomki, M, Isolauri, E, Salminen, S. Long-term monitoring of the human intestinal microbiota from the 2nd week to 13 years of age. Anaerobe. 2014; 28, 149156.
171. Luoto, R, Kalliomaki, M, Laitinen, K, Isolauri, E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond). 2010; 34, 15311537.
172. Hashemi, A, Villa, CR, Comelli, EM. Probiotics in early life: a preventative and treatment approach. Food Funct. 2016; 7, 17521768.
173. Petschow, BW, Figueroa, R, Harris, CL, et al. Effects of feeding an infant formula containing Lactobacillus GG on the colonization of the intestine: a dose-response study in healthy infants. J Clin Gastroenterol. 2005; 39, 786790.
174. Yan, F, Liu, L, Cao, H, et al. Neonatal colonization of mice with LGG promotes intestinal development and decreases susceptibility to colitis in adulthood. Mucosal Immunol. 2017; 10, 117127.
175. Mugambi, MN, Musekiwa, A, Lombard, M, Young, T, Blaauw, R. Synbiotics, probiotics or prebiotics in infant formula for full term infants: a systematic review. Nutr J. 2012; 11, 81.
176. Lee le, Y, Bharani, R, Biswas, A, et al. Normal growth of infants receiving an infant formula containing Lactobacillus reuteri, galacto-oligosaccharides, and fructo-oligosaccharide: a randomized controlled trial. Matern Health Neonatol Perinatol. 2015; 1, 9.
177. Szajewska, H, Ruszczynski, M, Szymanski, H, et al. Effects of infant formula supplemented with prebiotics compared with synbiotics on growth up to the age of 12 mo: a randomized controlled trial. Pediatr Res. 2017; 81, 752758.
178. Perez-Munoz, ME, Arrieta, MC, Ramer-Tait, AE, Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017; 5, 48.
179. Mueller, NT, Bakacs, E, Combellick, J, Grigoryan, Z, Dominguez-Bello, MG. The infant microbiome development: mom matters. Trends Mol Med. 2015; 21, 109117.
180. Francino, MP. Early development of the gut microbiota and immune health. Pathogens. 2014; 3, 769790.
181. Funkhouser, LJ, Bordenstein, SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013; 11, e1001631.
182. Vyas, U, Ranganathan, N. Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res Pract. 2012; 2012, 872716.
183. van den Nieuwboer, M, Claassen, E, Morelli, L, Guarner, F, Brummer, RJ. Probiotic and synbiotic safety in infants under two years of age. Beneficial Microbes. 2014; 5, 4560.
184. White, RA, Bjornholt, JV, Baird, DD, et al. Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol. 2013; 9, e1003042.
185. O’Sullivan, A, Farver, M, Smilowitz, JT. The influence of early infant-feeding practices on the intestinal microbiome and body composition in infants. Nutr Metab Insights. 2015; 8, 19.
186. Scheepers, LE, Penders, J, Mbakwa, CA, et al. The intestinal microbiota composition and weight development in children: the KOALA Birth Cohort Study. Int J Obes (Lond). 2015; 39, 1625.
187. Dogra, S, Sakwinska, O, Soh, SE, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio. 2015; 6, e02419e02414.
188. Cox, LM, Yamanishi, S, Sohn, J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014; 158, 705721.
189. Yatsunenko, T, Rey, FE, Manary, MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486, 222227.
190. Palmer, C, Bik, EM, DiGiulio, DB, Relman, DA, Brown, PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5, e177.
191. Rodriguez, JM, Murphy, K, Stanton, C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015; 26, 26050.
192. Marques, TM, Wall, R, Ross, RP, et al. Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol. 2010; 21, 149156.
193. Azad, MB, Konya, T, Maughan, H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013; 185, 385394.
194. Bezirtzoglou, E, Tsiotsias, A, Welling, GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011; 17, 478482.
195. Fallani, M, Young, D, Scott, J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 2010; 51, 7784.
196. Klaassens, ES, Boesten, RJ, Haarman, M, et al. Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl Environ Microbiol. 2009; 75, 26682676.
197. Thompson, AL, Monteagudo-Mera, A, Cadenas, MB, Lampl, ML, Azcarate-Peril, MA. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol. 2015; 5, 3.
198. Eggesbo, M, Moen, B, Peddada, S, et al. Development of gut microbiota in infants not exposed to medical interventions. APMIS. 2011; 119, 1735.
199. Ding, T, Schloss, PD. Dynamics and associations of microbial community types across the human body. Nature. 2014; 509, 357360.
200. Luoto, R, Kalliomaki, M, Laitinen, K, et al. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J Pediatr Gastroenterol Nutr. 2011; 52, 9095.
201. Vael, C, Verhulst, SL, Nelen, V, Goossens, H, Desager, KN. Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathog. 2011; 3, 8.
202. Kalliomaki, M, Collado, MC, Salminen, S, Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008; 87, 534538.
203. Pham, VT, Lacroix, C, Braegger, CP, Chassard, C. Early colonization of functional groups of microbes in the infant gut. Environ Microbiol. 2016; 18, 22462258.
204. Backhed, F, Roswall, J, Peng, Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015; 17, 690703.
205. Bokulich, NA, Chung, J, Battaglia, T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016; 8, 343–382.
206. Martin, FP, Moco, S, Montoliu, I, et al. Impact of breast-feeding and high- and low-protein formula on the metabolism and growth of infants from overweight and obese mothers. Pediatr Res. 2014; 75, 535543.
207. Hascoet, JM, Hubert, C, Rochat, F, et al. Effect of formula composition on the development of infant gut microbiota. J Pediatr Gastroenterol Nutr. 2011; 52, 756762.
208. Oda, H, Wakabayashi, H, Yamauchi, K, Abe, F. Lactoferrin and bifidobacteria. Biometals. 2014; 27, 915922.
209. Mastromarino, P, Capobianco, D, Campagna, G, et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals. 2014; 27, 10771086.
210. Yaron, S, Shachar, D, Abramas, L, et al. Effect of high beta-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr. 2013; 56, 376381.
211. Nejrup, RG, Licht, TR, Hellgren, LI. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice. Sci Rep. 2017; 7, 3975.
212. Le Huerou-Luron, I, Bouzerzour, K, Ferret-Bernard, S, et al. A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. Eur J Nutr. 2016, doi: 10.1007/s00394-016-1329-3.
213. Donovan, SM, Wang, M, Li, M, et al. Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv Nutr. 2012; 3, 450S455S.
214. Prentice, P, Vervoort, J, Dingess, K, et al. Human milk short chain fatty acid composition is associated with infancy adiposity outcomes [abstract]. In Abstracts of the 49th Annual Meeting of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition; 2016, May 25–28. ESPGHAN: Athens; 2016. Abstract nr 634.
215. Layden, BT, Angueira, AR, Brodsky, M, Durai, V, Lowe, WL Jr. Short chain fatty acids and their receptors: new metabolic targets. Transl Res. 2013; 161, 131140.
216. Kaji, I, Karaki, S, Kuwahara, A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion. 2014; 89, 3136.
217. Zadeh-Tahmasebi, M, Duca, FA, Rasmussen, BA, et al. Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo. J Biol Chem. 2016; 291, 88168824.
218. Chambers, ES, Viardot, A, Psichas, A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015; 64, 17441754.
219. Tolhurst, G, Heffron, H, Lam, YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012; 61, 364371.
220. Psichas, A, Sleeth, ML, Murphy, KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015; 39, 424429.
221. Everard, A, Cani, PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014; 15, 189196.
222. Baggio, LL, Drucker, DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007; 132, 21312157.
223. Tian, L, Jin, T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diab. 2016; 8, 753765.
224. Wu, T, Rayner, CK, Horowitz, M. Incretins. Handb Exp Pharmacol. 2016; 233, 137171.
225. Delzenne, NM, Neyrinck, AM, Backhed, F, Cani, PD. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol. 2011; 7, 639646.
226. Alvaro, A, Sola, R, Rosales, R, et al. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life. 2008; 60, 757764.
227. Gao, Z, Yin, J, Zhang, J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009; 58, 15091517.
228. Zaibi, MS, Stocker, CJ, O’Dowd, J, et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 2010; 584, 23812386.
229. Xiong, Y, Miyamoto, N, Shibata, K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A. 2004; 101, 10451050.
230. Ye, J, Wu, W, Li, Y, Li, L. Influences of the gut microbiota on DNA methylation and histone modification. Dig Dis Sci. 2017; 62, 11551164.
231. Bhat, MI, Kapila, R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev. 2017; 75, 374389.
232. Majnik, AV, Lane, RH. The relationship between early-life environment, the epigenome and the microbiota. Epigenomics. 2015; 7, 11731184.
233. Woo, V, Alenghat, T. Host-microbiota interactions: epigenomic regulation. Curr Opin Immunol. 2017; 44, 5260.
234. Aoyama, M, Kotani, J, Usami, M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition. 2010; 26, 653661.
235. Davie, JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003; 133, 2485S2493S.
236. Sanderson, IR. Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J Nutr. 2004; 134, 2450S2454S.
237. Remely, M, Aumueller, E, Merold, C, et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014; 537, 8592.
238. Krautkramer, KA, Kreznar, JH, Romano, KA, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Molecular Cell. 2016; 64, 982992.
239. Kumar, H, Lund, R, Laiho, A, et al. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio. 2014; 5, e02113e02114.
240. Mischke, M, Plosch, T. More than just a gut instinct-the potential interplay between a baby’s nutrition, its gut microbiome, and the epigenome. Am J Physiol Regul Integr Comp Physiol. 2013; 304, R10651069.
241. Brands, B, Demmelmair, H, Koletzko, B. How growth due to infant nutrition influences obesity and later disease risk. Acta Paediatr. 2014; 103, 578585.
242. Perfilyev, A, Dahlman, I, Gillberg, L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017; 105, 9911000.
243. Singh, N, Shirdel, EA, Waldron, L, et al. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci. 2012; 8, 171186.
244. Dalmasso, G, Nguyen, HT, Yan, Y, et al. Microbiota modulate host gene expression via microRNAs. PLoS One. 2011; 6, e19293.
245. Weber, JA, Baxter, DH, Zhang, S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010; 56, 17331741.
246. Alsaweed, M, Hartmann, PE, Geddes, DT, Kakulas, F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health. 2015; 12, 1398114020.
247. Golan-Gerstl, R, Elbaum Shiff, Y, Moshayoff, V, et al. Characterization and biological function of milk-derived miRNAs. Mol Nutr Food Res. 2017; 61, doi: 10.1002/mnfr.201700009.
248. Izumi, H, Kosaka, N, Shimizu, T, et al. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci. 2012; 95, 48314841.
249. Roura, E, Koopmans, SJ, Lalles, JP, et al. Critical review evaluating the pig as a model for human nutritional physiology. Nutr Res Rev. 2016; 29, 6090.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Developmental Origins of Health and Disease
  • ISSN: 2040-1744
  • EISSN: 2040-1752
  • URL: /core/journals/journal-of-developmental-origins-of-health-and-disease
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed