Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T06:49:31.278Z Has data issue: false hasContentIssue false

Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet

Published online by Cambridge University Press:  14 June 2010

M. SAMIMY*
Affiliation:
Gas Dynamics and Turbulence Laboratory, Department of Mechanical Engineering, The Ohio State University, 2300 West Case Road, Columbus, OH 43235-7531, USA
J.-H. KIM
Affiliation:
Gas Dynamics and Turbulence Laboratory, Department of Mechanical Engineering, The Ohio State University, 2300 West Case Road, Columbus, OH 43235-7531, USA
M. KEARNEY-FISCHER
Affiliation:
Gas Dynamics and Turbulence Laboratory, Department of Mechanical Engineering, The Ohio State University, 2300 West Case Road, Columbus, OH 43235-7531, USA
A. SINHA
Affiliation:
Gas Dynamics and Turbulence Laboratory, Department of Mechanical Engineering, The Ohio State University, 2300 West Case Road, Columbus, OH 43235-7531, USA
*
Email address for correspondence: samimy.1@osu.edu

Abstract

An axisymmetric perfectly expanded Mach 1.3 jet, with a Reynolds number based on the nozzle exit diameter (ReD) of 1.1 × 106 and turbulent boundary layer at the nozzle exit, was excited using localized arc filament plasma actuators over a wide range of forcing Strouhal numbers (StDF). Eight actuators distributed azimuthally were used to excite azimuthal modes m = 0–3. Far-field acoustic, flow velocity and irrotational near-field pressure were probed with a three-fold objective: (i) to investigate the broadband far-field noise amplification reported in the literature at lower speeds and ReD using excitation of m = 0 at low StDF; (ii) to explore broadband far-field noise suppression using excitation of m = 3 at higher StDF; and (iii) to shed some light on the connection between the flow field and the far-field noise. The broadband far-field noise amplification observed is not as extensive in amplitude or frequency range, but still sufficiently large to be of concern in practical applications. Broadband far-field noise suppression of 4–5 dB at 30° polar angle peak frequency, resulting in approximately 2 dB attenuation in the overall sound pressure level, is achieved with excitation of m = 3 at StDF ~ 0.9. Some of the noteworthy observations and inferences are (a) there is a strong correlation between the far-field broadband noise amplification and the turbulence amplification; (b) far-field noise suppression is achieved when the jet is forced with the maximum jet initial growth rate frequency thus limiting significant dynamics of structures to a shorter region close to the nozzle exit; (c) structure breakdown and dynamic interaction seem to be the dominant source of noise; and (d) coherent structures dominate the forced jet over a wide range of StDF (up to ~ 1.31) with the largest and most organized structures observed around the jet preferred mode StDF.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahuja, K. K. 1985 Some unique experiments on receptivity. AIAA Paper 85-0533.CrossRefGoogle Scholar
Ahuja, K. K. & Blakney, D. F. 1985 Tone excited jets. Part IV. Acoustic measurements. J. Sound Vib. 102 (1), 93117.CrossRefGoogle Scholar
Alkislar, M. B. 2009 Flow characteristics of a jet controlled with Chevron–Microjet combination for noise reduction. In Forty-seventh AIAA Aerospace Sciences Meeting. AIAA Paper 2009-851.CrossRefGoogle Scholar
Arakeri, V. H., Krothapalli, A., Siddavaram, V., Alkislar, M. B. & Lourenco, L. M. 2003 On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 7598.CrossRefGoogle Scholar
Barone, M. F. & Lele, S. K. 2005 Receptivity of the compressible mixing layer. J. Fluid Mech. 540, 301335.CrossRefGoogle Scholar
Bechert, D. W. 1988 Excitation of instability waves in free shear layers. Part 1. Theory. J. Fluid Mech. 188, 4762.CrossRefGoogle Scholar
Bechert, D. W. & Pfizenmaier, E. 1975 On the amplification of broadband jet noise by a pure tone excitation. J. Sound Vib. 43 (3), 581587.CrossRefGoogle Scholar
Bechert, D. W. & Pfizenmaier, E. 1977 Amplification of jet noise by a higher-mode acoustical excitation. AIAA J. 15 (9), 12681271.CrossRefGoogle Scholar
Bechert, D. W. & Stahl, B. 1988 Excitation of instability waves in free shear layers. Part 2. Experiments. J. Fluid Mech. 188, 6384.CrossRefGoogle Scholar
Bridges, J. E. & Hussain, A. K. M. F. 1987 Roles of initial condition and vortex pairing in jet noise. J. Sound Vib. 117 (2), 289311.CrossRefGoogle Scholar
Bridges, J. E. & Hussain, A. K. M. F. 1992 Direct evaluation of aeroacoustic theory in a jet. J. Fluid Mech. 240, 469501.CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech 64 (4), 715816.CrossRefGoogle Scholar
Castelain, T., Sunyach, M., Juve, D. & Bera, J.-C. 2007 Jet noise reduction by impinging microjets: an aerodynamic investigation testing microjet parameters. In Thirteenth AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2007-3419.CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.CrossRefGoogle Scholar
Corke, T. C., Shakib, F. & Nagib, H. M. 1991 Mode selection and resonant phase locking in unstable axisymmetric jets. J. Fluid Mech. 223, 253311.CrossRefGoogle Scholar
Crighton, D. G. 1981 Jet noise and the effects of jet forcing. In The Role of Coherent Structures in Modeling Turbulence and Mixing (ed. Jimenez, J.). Lecture Notes in Physics, vol. 136, pp. 340362. Springer.CrossRefGoogle Scholar
Crighton, D. G. 1985 The Kutta condition in unsteady flow. Annu. Rev. Fluid Mech. 17, 411445.CrossRefGoogle Scholar
Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 387413.CrossRefGoogle Scholar
Crow, S. & Champagne, F. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.CrossRefGoogle Scholar
Deneuville, P. & Jacques, J. 1977 Jet noise amplification: a practically important problem. AIAA Paper 77-1362.CrossRefGoogle Scholar
Ffowcs-Williams, J. E. & Kempton, A. J. 1978 The noise from the large-scale structure of a jet. J. Fluid Mech. 84 (4), 673694.CrossRefGoogle Scholar
George, W. K., Beuther, P. D. & Arndt, R. E. A. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 155191.CrossRefGoogle Scholar
Gudmundsson, K. & Colonius, T. 2009 Parabolized stability equation models for turbulent jets and their radiated sound. In Fifteenth AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2009-3380.CrossRefGoogle Scholar
Hall, J., Pinier, J., Hall, A. M. & Glauser, M. N. 2006 Two-point correlations of the near-field and far-field pressure in a transonic jet. In Proceedings of the Fluids Engineering Summer Meeting (FEDSM2006-98458), Miami, Fl. ASME.Google Scholar
Hileman, J., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.CrossRefGoogle Scholar
Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
Hussain, A. K. M. F. 1983 Coherent structures – reality and myth. Phys. Fluids 26 (10), 28162850.CrossRefGoogle Scholar
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Hasan, M. A. Z. 1985 Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150, 159168.CrossRefGoogle Scholar
Jordan, P. & Gervais, Y. 2008 Subsonic jet aeroacoustics: associating experiment, modelling and simulation. Exp. Fluids 44, 121.CrossRefGoogle Scholar
Jubelin, B. 1980 New experimental studies on jet noise amplification. AIAA Paper 1980-0961.CrossRefGoogle Scholar
Kastner, J., Kim, J.-H. & Samimy, M. 2009 A study of the correlation of large-scale structure dynamics and far-field radiated noise in an excited Mach 0.9 jet. Intl J. Aeroacoust. 8 (3), 231–159.CrossRefGoogle Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2009 a Noise control of a high Reynolds number Mach 0.9 heated jet using plasma actuators. AIAA Paper 2009-3188.CrossRefGoogle Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2009 b Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators. Phys. Fluids 21, 095101.CrossRefGoogle Scholar
Kibens, V. 1980 Discrete noise spectrum generated by an acoustically excited jet. AIAA J. 18 (4), 434451.CrossRefGoogle Scholar
Kim, J.-H., Kastner, J. & Samimy, M. 2009 a Active control of a high Reynolds number Mach 0.9. AIAA J. 47 (1), 116128.CrossRefGoogle Scholar
Kim, J.-H., Nishihara, M., Keshav, S., Adamovich, I., Samimy, M., Gorbatov, S. V. & Pliavaka, F. V. 2009 b On the development of localized arc filament plasma actuators for high-speed flow control. AIAA Paper 2009-4071.CrossRefGoogle Scholar
Kim, J.-H. & Samimy, M. 2009 Effects of active control on the flow structure in a high Reynolds number supersonic jet. Intl J. Flow Control 1 (2), 99117.CrossRefGoogle Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. Part I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
Lu, H. Y. 1983 Effects of excitation on coaxial jet noise. AIAA J. 21 (2), 214220.CrossRefGoogle Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (3), 521544.CrossRefGoogle Scholar
Michalke, A. & Fuchs, H. V. 1975 On turbulence and noise of an axisymmetric shear flow. J. Fluid Mech. 70 (1), 179205.CrossRefGoogle Scholar
Moore, C. J. 1977 a The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80 (2), 321367.CrossRefGoogle Scholar
Moore, C. J. 1977 b The effect of shear layer instability on jet exhaust noise. In Structure and Mechanisms of Turbulence (ed. Fiedler, H.). Lecture Notes in Physics, Springer.Google Scholar
Morrison, G. & McLaughlin, D. 1979 Noise generation by instabilities in low Reynolds number supersonic jets. J. Sound Vib. 65 (2), 177191.CrossRefGoogle Scholar
Norum, T. D. 1983 Screech suppression in supersonic jets. AIAA J. 21 (2), 235240.CrossRefGoogle Scholar
Raman, G. 1999 Supersonic jet screech: half-century from Powell to the present. J. Sound Vib. 225 (3), 543571.CrossRefGoogle Scholar
Reba, R., Narayanan, S., Colonius, T. & Suzuki, T. 2005 Modeling jet noise from organized structures using near-field hydrodynamic pressure. In Eleventh AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2005-3093.CrossRefGoogle Scholar
Samimy, M., Adamovich, I., Webb, B., Kastner, J., Hileman, J., Keshav, S. & Palm, P. 2004 Development and characterization of plasma actuators for high speed jet control. Exp. Fluids 37 (4), 577588.CrossRefGoogle Scholar
Samimy, M. J., Kim Kastner, J.-H., Adamovich, I. & Utkin, Y. 2007 a Active control of a Mach 0.9 jet for noise mitigation using plasma actuators. AIAA J. 45 (4), 890901.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 b Active control of high speed and high Reynolds number jets using plasma actuators. J. Fluid Mech. 578, 305330.CrossRefGoogle Scholar
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.CrossRefGoogle Scholar
Tam, C. K. W. 1978 Excitation of instability waves in a two-dimensional shear layer by sound. J. Fluid Mech. 89 (2), 357371.CrossRefGoogle Scholar
Tam, C. K. W. 1998 Jet noise: since 1952. Theor. Comput. Fluid Dyn. 10, 393405.CrossRefGoogle Scholar
Tanna, H. K. & Ahuja, K. K. 1985 Tone excited jets. Part I. Introduction. J. Sound Vib. 102 (1), 5761.CrossRefGoogle Scholar
Tinney, C. E. & Jordan, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175204.CrossRefGoogle Scholar
Utkin, Y. G., Keshav, S., Kim, J.-H., Kastner, J., Adamovich, I. V. & Samimy, M. 2007 Development and use of localized arc filament plasma actuators for high-speed flow control. J. Phys. D: Appl. Phys. 40, 685694.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101 (3), 449491.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.CrossRefGoogle Scholar