Hostname: page-component-588bc86c8c-pkxkl Total loading time: 0 Render date: 2023-11-30T11:47:31.895Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Depth-integrated equation for hydro-acoustic waves with bottom damping

Published online by Cambridge University Press:  02 February 2015

Ali Abdolali*
Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
James T. Kirby
Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
Giorgio Bellotti
Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
Email address for correspondence:


We present a depth-integrated equation for the mechanics of generation, propagation and dissipation of low-frequency hydro-acoustic waves due to sudden bottom displacement in a weakly compressible ocean overlying a weakly compressible viscous sediment layer. The model is validated against a full 3D computational model. Physical properties of these waves are studied and compared with those for waves over a rigid sea bed, revealing changes in the frequency spectrum and modal peaks. The resulting model equation can be used for numerical prediction in large-scale domains, overcoming the computational difficulties of 3D models while taking into account the role of bottom dissipation on hydro-acoustic wave generation and propagation.

© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abdolali, A., Cecioni, C., Bellotti, G. & Kirby, J. T. 2015 Hydro-acoustic and tsunami waves generated by the 2012 Haida Gwaii earthquake: modeling and in situ measurements. J. Geophys. Res. Oceans 120, doi:10.1002/2014JC010385.Google Scholar
Abdolali, A., Cecioni, C., Bellotti, G. & Sammarco, P. 2014 A depth-integrated equation for large scale modeling of tsunami in weakly compressible fluid. Coastal Engineering Proceedings 1 (34), currents.9.Google Scholar
Brekhovskikh, L. M., Lysanov, I. U. P. & Lysanov, Y. P. 2003 Fundamentals of Ocean Acoustics. Springer.Google Scholar
Buckingham, M. J. 1997 Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. J. Acoust. Soc. Am. 102 (5), 25792596.Google Scholar
Cecioni, C., Abdolali, A., Bellotti, G. & Sammarco, P. 2014a Large-scale numerical modeling of hydro-acoustic waves generated by tsunamigenic earthquakes. Nat. Hazards Earth Syst. Sci. Discuss. 2 (7), 46294658.Google Scholar
Cecioni, C., Bellotti, G., Romano, A., Abdolali, A. & Sammarco, P. 2014b Tsunami early warning system based on real-time measurements of hydro-acoustic waves. Procedia Engng 70 (C), 311320.Google Scholar
Chierici, F., Pignagnoli, L. & Embriaco, D. 2010 Modeling of the hydroacoustic signal and tsunami wave generated by seafloor motion including a porous seabed. J. Geophys. Res. 115, C03015.Google Scholar
Eyov, E., Klar, A., Kadri, U. & Stiassnie, M. 2013 Progressive waves in a compressible-ocean with an elastic bottom. Wave Motion 50 (5), 929939.Google Scholar
Hendin, G. & Stiassnie, M. 2013 Tsunami and acoustic-gravity waves in water of constant depth. Phys. Fluids (1994-present) 25 (8), 086103.Google Scholar
Kadri, U. & Stiassnie, M. 2012 Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res. 117, C03035.Google Scholar
Kimura, M. 2006 Shear wave velocity in marine sediment. Japan. J. Appl. Phys. 45 (5S), 48244828.Google Scholar
Nosov, M. A. 1999 Tsunami generation in compressible ocean. Phys. Chem. Earth 24 (5), 437441.Google Scholar
Nosov, M. A. & Kolesov, S. V. 2007 Elastic oscillations of water column in the 2003 Tokachi-Oki tsunami source: in-situ measurements and 3-d numerical modelling. Nat. Hazards Earth Syst. Sci. 7 (2), 243249.Google Scholar
Nosov, M. A., Kolesov, S. V., Denisova, A. V., Alekseev, A. B. & Levin, B. V. 2007 On the near-bottom pressure variations in the region of the 2003 Tokachi-Oki tsunami source. Oceanology 47 (1), 2632.Google Scholar
Renzi, E. & Dias, F. 2014 Hydro-acoustic precursors of gravity waves generated by surface pressure disturbances localised in space and time. J. Fluid Mech. 754, 250262.Google Scholar
Sammarco, P., Cecioni, C., Bellotti, G. & Abdolali, A. 2013 Depth-integrated equation for large-scale modelling of low-frequency hydroacoustic waves. J. Fluid Mech. 722, R6.Google Scholar
Silva, R., Salles, P. & Govaere, G. 2003 Extended solution for waves travelling over a rapidly changing porous bottom. Ocean Engng 30 (4), 437452.Google Scholar
Stiassnie, M. 2010 Tsunamis and acoustic-gravity waves from underwater earthquakes. J. Engng Maths 67 (1–2), 2332.Google Scholar
Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., Sweet, S. & Tappin, D. R. 2002 The slump origin of the 1998 Papua New Guinea tsunami. Proc. R. Soc. Lond. A 458 (2020), 763789.Google Scholar
Van Keken, P. E., Spiers, C. J., Van den Berg, A. P. & Muyzert, E. J. 1993 The effective viscosity of rocksalt: implementation of steady-state creep laws in numerical models of salt diapirism. Tectonophysics 225 (4), 457476.Google Scholar