Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54jdg Total loading time: 0.914 Render date: 2022-08-14T09:49:59.047Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Learning to school in the presence of hydrodynamic interactions

Published online by Cambridge University Press:  26 January 2016

M. Gazzola
Affiliation:
School of Engineering and Applied Sciences, Harvard University, MA 02138, USA
A. A. Tchieu
Affiliation:
SPACEX, Hawthorne, CA 90250, USA
D. Alexeev
Affiliation:
Chair of Computational Science, ETH Zürich, CH-8092, Switzerland
A. de Brauer
Affiliation:
ENSEIRB-MATMECA Bordeaux Graduate School of Engineering, Talence, France
P. Koumoutsakos*
Affiliation:
Chair of Computational Science, ETH Zürich, CH-8092, Switzerland
*
Email address for correspondence: petros@ethz.ch

Abstract

Schooling, an archetype of collective behaviour, emerges from the interactions of fish responding to sensory information mediated by their aqueous environment. A fundamental and largely unexplored question in fish schooling concerns the role of hydrodynamics. Here, we investigate this question by modelling swimmers as vortex dipoles whose interactions are governed by the Biot–Savart law. When we enhance these dipoles with behavioural rules from classical agent-based models, we find that they do not lead robustly to schooling because of flow-mediated interactions. We therefore propose to use swimmers equipped with adaptive decision-making that adjust their gaits through a reinforcement learning algorithm in response to nonlinearly varying hydrodynamic loads. We demonstrate that these swimmers can maintain their relative position within a formation by adapting their strength and school in a variety of prescribed geometrical arrangements. Furthermore, we identify schooling patterns that minimize the individual and collective swimming effort, through an evolutionary optimization. The present work suggests that the adaptive response of individual swimmers to flow-mediated interactions is critical in fish schooling.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, M. V. & Colgan, P. W. 1987 Fish schools and their hydrodynamic function: a reanalysis. Environ. Biol. Fishes 20 (1), 7980.CrossRefGoogle Scholar
Aditi Simha, R. & Ramaswamy, S. 2002 Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89 (5), 058101.Google ScholarPubMed
Aoki, I. 1982 A simulation study on the schooling mechanism in fish. Bull. Japan. Soc. Sci. Fisheries 48 (8), 10811088.CrossRefGoogle Scholar
Aref, H., Newton, P., Stremler, M. A., Tokieda, T. & Vainchtein, D. 2003 Vortex crystals. Adv. Appl. Mech. 39, 179.CrossRefGoogle Scholar
Barnes, R. S. K. & Hughes, R. N. 1988 An Introduction to Marine Ecology. Blackwell.Google Scholar
Boschitsch, B. M., Dewey, P. A. & Smits, A. J. 2014 Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Phys. Fluids 26 (5), 051901.CrossRefGoogle Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.CrossRefGoogle Scholar
Brady, J. F., Phillips, R. J., Lester, J. C. & Bossis, G. 1988 Dynamic simulation of hydrodynamically interacting suspensions. J. Fluid Mech. 195 (1), 257280.CrossRefGoogle Scholar
Breder, C. M. 1965 Vortices and fish schools. Zool. New York 50 (2), 97114.Google Scholar
Chate, H., Ginelli, F., Gregoire, G., Peruani, F. & Raynaud, F. 2008 Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64 (3–4), 451456.CrossRefGoogle Scholar
Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. 2005 Effective leadership and decision-making in animal groups on the move. Nature 433 (7025), 513516.CrossRefGoogle Scholar
Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. 2002 Collective memory and spatial sorting in animal groups. J. Theoret. Biol. 218 (1), 111.CrossRefGoogle ScholarPubMed
Cullen, J. M., Shaw, E. & Baldwin, H. A. 1965 Methods for measuring the three-dimensional structure of fish schools. Animal Behaviour 13 (4), 534543.CrossRefGoogle ScholarPubMed
Dewey, P. A., Quinn, D. B., Boschitsch, B. M. & Smits, A. J. 2014 Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration. Phys. Fluids 26 (4), 041903.CrossRefGoogle Scholar
Gazzola, M.2013 Simulation, optimization and learning of artificial swimmers. PhD thesis, ETH Zurich.Google Scholar
Gazzola, M., Burckhardt, C. J., Bayati, B., Engelke, M., Greber, U. F. & Koumoutsakos, P. 2009 A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus. PLoS Comput. Biol. 5 (12), e1000623.CrossRefGoogle Scholar
Gazzola, M., Chatelain, P., van Rees, W. M. & Koumoutsakos, P. 2011a Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 230 (19), 70937114.CrossRefGoogle Scholar
Gazzola, M., Hejazialhosseini, B. & Koumoutsakos, P. 2014 Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers. SIAM J. Sci. Comput. 36 (3), B622B639.CrossRefGoogle Scholar
Gazzola, M., Mimeau, C., Tchieu, A. A. & Koumoutsakos, P. 2012a Flow mediated interactions between two cylinders at finite Re numbers. Phys. Fluids 24 (4), 043103.CrossRefGoogle Scholar
Gazzola, M., van Rees, W. M. & Koumoutsakos, P. 2012b C-start: optimal start of larval fish. J. Fluid Mech. 698, 518.CrossRefGoogle Scholar
Gazzola, M., Vasilyev, O. V. & Koumoutsakos, P. 2011b Shape optimization for drag reduction in linked bodies using evolution strategies. Comput. Struct. 89 (11–12), 12241231.CrossRefGoogle Scholar
Goto, Y. & Tanaka, H. 2015 Purely hydrodynamic ordering of rotating disks at a finite Reynolds number. Nat. Commun. 6.CrossRefGoogle Scholar
Hansen, N., Muller, S. D. & Koumoutsakos, P. 2003 Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11 (1), 118.CrossRefGoogle Scholar
Hatwalne, Y., Ramaswamy, S., Rao, M. & Simha, R. A. 2004 Rheology of active-particle suspensions. Phys. Rev. Lett. 92 (11), 118101.CrossRefGoogle ScholarPubMed
Hubbard, S., Babak, P., Sigurdsson, S. T. & Magnusson, K. G. 2004 A model of the formation of fish schools and migrations of fish. Ecol. Model. 174 (4), 359374.CrossRefGoogle Scholar
Huth, A. & Wissel, C. 1992 The simulation of the movement of fish schools. J. Theoret. Biol. 156 (3), 365385.CrossRefGoogle Scholar
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Jiang, H. S., Osborn, T. R. & Meneveau, C. 2002 The flow field around a freely swimming copepod in steady motion. Part I. Theoretical analysis. J. Plankton Res. 24 (3), 167189.CrossRefGoogle Scholar
Kanso, E. & Newton, P. N. 2009 Passive locomotion via normal-mode coupling in a submerged spring–mass system. J. Fluid Mech. 641, 205215.CrossRefGoogle Scholar
Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209 (24), 48414857.CrossRefGoogle ScholarPubMed
Koch, D. L. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 637659.CrossRefGoogle Scholar
Landeau, L. & Terborgh, J. 1986 Oddity and the ‘confusion effect’ in predation. Animal Behaviour 34 (5), 13721380.CrossRefGoogle Scholar
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003 Fish exploiting vortices decrease muscle activity. Science 302 (5650), 15661569.CrossRefGoogle ScholarPubMed
Lin, Z., Thiffeault, J.-L. & Childress, S. 2011 Stirring by squirmers. J. Fluid Mech. 669, 167177.CrossRefGoogle Scholar
Major, P. F. 1978 Predator–prey interactions in two schooling fishes, Caranx ignobilis and Stolephorus purpureus . Animal Behaviour 26 (0), 760777.CrossRefGoogle Scholar
Misund, O. A., Aglen, A. & Fronaes, E. 1995 Mapping the shape, size, and density of fish schools by echo integration and a high-resolution sonar. ICES J. Marine Sci. 52 (1), 1120.CrossRefGoogle Scholar
Nair, S. & Kanso, E. 2007 Hydrodynamically coupled rigid bodies. J. Fluid Mech. 592, 393411.CrossRefGoogle Scholar
Niwa, H. S. 1994 Self-organizing dynamic-model of fish schooling. J. Theoret. Biol. 171 (2), 123136.CrossRefGoogle Scholar
Paoletti, P. & Mahadevan, L. 2011 Planar controlled gliding, tumbling and descent. J. Fluid Mech. 689, 489516.CrossRefGoogle Scholar
Park, H., Noca, F. & Koumoutsakos, P.2005 Vortex-generating microscopic robots would move in swarms. Tech. Rep., NASA Jet Propulsion Laboratory.Google Scholar
Parrish, J. K., Viscido, S. V. & Grünbaum, D. 2002 Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202 (3), 296305.CrossRefGoogle ScholarPubMed
Partridge, B. L. 1982 The structure and function of fish schools. Sci. Am. 246 (6), 114123.CrossRefGoogle ScholarPubMed
Partridge, B. L., Pitcher, T., Cullen, J. M. & Wilson, J. 1980 The three-dimensional structure of fish schools. Behav. Ecol. Sociobiol. 6 (4), 277288.CrossRefGoogle Scholar
Pitcher, T. J., Magurran, A. E. & Winfield, I. J. 1982 Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10 (2), 149151.CrossRefGoogle Scholar
van Rees, W. M., Gazzola, M. & Koumoutsakos, P. 2013 Optimal shapes for anguilliform swimmers at intermediate reynolds numbers. J. Fluid Mech. 722, R3.CrossRefGoogle Scholar
van Rees, W. M., Gazzola, M. & Koumoutsakos, P. 2015 Optimal morphokinematics for undulatory swimmers at intermediate Reynolds numbers. J. Fluid Mech. 775, 178188.CrossRefGoogle Scholar
Reynolds, C. W. 1987 Flocks, herds and schools: a distributed behavioural model. In SIGGRAPH’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 7187.Google Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101 (19), 194502.CrossRefGoogle ScholarPubMed
Rossinelli, D., Chatagny, L. & Koumoutsakos, P. 2011 Evolutionary optimization of scalar transport in cylinder arrays on multiGPU/multicore architectures. In Evolutionary and Deterministic Methods for Design, Optimization and Control, pp. 773784. Proc. Euro-Gen.Google Scholar
Saffman, P. G. 1967 The self-propulsion of a deformable body in a perfect fluid. J. Fluid Mech. 28, 385389.CrossRefGoogle Scholar
Shaw, E. 1978 Schooling fishes. Am. Sci. 66 (2), 166175.Google Scholar
Sutton, S. R. & Barto, A. G. 1998 Reinforcement Learning: An Introduction. MIT Press.Google Scholar
Taylor, G. I. 1952 Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A 214, 158183.CrossRefGoogle Scholar
Tchieu, A. A., Crowdy, D. & Leonard, A. 2010 Fluid-structure interaction of two bodies in an inviscid fluid. Phys. Fluids 22 (10), 107101.CrossRefGoogle Scholar
Tchieu, A. A., Kanso, E. & Newton, P. K. 2012 The finite-dipole dynamical system. Proc. R. Soc. Lond. A 468, 30063026.CrossRefGoogle Scholar
Wu, T. Y. 1971 Hydrodynamics of swimming fish and cetaceans. Adv. Appl. Maths 11, 163.Google Scholar
Tsang, A. C. H. & Kanso, E. 2013 Dipole interactions in doubly periodic domains. J. Nonlinear Sci. 23 (6), 971991.CrossRefGoogle Scholar
Vicsek, T., Czirok, A., Benjacob, E., Cohen, I. & Shochet, O. 1995 Novel type of phase-transition in a system of self-driven particles. Phys. Rev. Lett. 75 (6), 12261229.CrossRefGoogle Scholar
Viscido, S. V., Parrish, J. K. & Grunbaum, D. 2005 The effect of population size and number of influential neighbors on the emergent properties of fish schools. Ecol. Model. 183 (2–3), 347363.CrossRefGoogle Scholar
Watkins, C. & Dayan, P. 1992 Q-learning. Mach. Learn. 8 (3–4), 279292.CrossRefGoogle Scholar
Weihs, D. 1973 Hydromechanics of fish schooling. Nature 241 (5387), 290291.CrossRefGoogle Scholar
Weihs, D. 2004 The hydrodynamics of dolphin drafting. J. Biol. 3 (2), 8.Google ScholarPubMed
Whittlesey, R., Liska, S. & Dabiri, J. 2010 Fish schooling as a basis for vertical axis wind turbine farm design. Bioinspir. Biomim. 5 (3), 035005.CrossRefGoogle ScholarPubMed
Wolfgang, M. J., Anderson, J. M., Grosenbaugh, M. A., Yue, D. K. & Triantafyllou, M. S. 1999 Near-body flow dynamics in swimming fish. J. Exp. Biol. 202 (17), 23032327.Google ScholarPubMed
Zhu, L., Lauga, E. & Brandt, L. 2012 Self-propulsion in viscoelastic fluids: pushers vs. pullers. Phys. Fluids 24, 051902.CrossRefGoogle Scholar
65
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Learning to school in the presence of hydrodynamic interactions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Learning to school in the presence of hydrodynamic interactions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Learning to school in the presence of hydrodynamic interactions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *