Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-18T14:26:54.832Z Has data issue: false hasContentIssue false

A new density filter for pipes for fluid topology optimization

Published online by Cambridge University Press:  30 April 2024

Young Hun Choi
Affiliation:
School of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
Gil Ho Yoon*
Affiliation:
School of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
*
Email address for correspondence: ghy@hanyang.ac.kr

Abstract

This study presents a new density filter for a pipe-shaped structure and its application to fluid topology optimization. A simple and straight pipe-shaped structure for fluid is preferred for many engineering purposes rather than the perplex manifold structure provided by the topology optimization method. To determine an optimal pipe structure for fluid, we develop a new density filter and apply it to fluid topology optimization. Hence, the original spatially varying design variables of the fluid topology optimization are modified based on the pipe density filter. Subsequently, the filter design variables, including a uniform pipe wall thickness and adjusted cross-section, are used for artificial pseudo-rigid bodies in fluid topology optimization. An additional constraint is imposed to maintain a nearly uniform pipe thickness. Several numerical examples are solved to demonstrate the validity of the present pipe density filter for fluid topology optimization problems minimizing the energy dissipation of the fluid and controlling the particles suspended in the fluid.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aage, N., Poulsen, T.H., Gersborg-Hansen, A. & Sigmund, O. 2008 Topology optimization of large scale Stokes flow problems. Struct. Multidiscipl. Optim. 35 (2), 175180.CrossRefGoogle Scholar
Andreasen, C.S. 2020 A framework for topology optimization of inertial microfluidic particle manipulators. Struct. Multidiscipl. Optim. 61 (6), 24812499.CrossRefGoogle Scholar
Andreasen, C.S. & Sigmund, O. 2013 Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput. Meth. Appl. Mech. Engng 258, 5562.CrossRefGoogle Scholar
Bendsøe, M.P. & Kikuchi, N. 1988 Generating optimal topologies in structural design using a homogenization method. Comput. Meth. Appl. Mech. Engng 71 (2), 197224.CrossRefGoogle Scholar
Borrvall, T. & Petersson, J. 2003 Topology optimization of fluids in Stokes flow. Intl J. Numer. Meth. Fluids 41 (1), 77107.CrossRefGoogle Scholar
Chen, X. 2016 Topology optimization of microfluidics – a review. Microchem. J. 127, 5261.CrossRefGoogle Scholar
Choi, Y.H. & Yoon, G.H. 2023 A matlab topology optimization code to control the trajectory of particle in fluid. Struct. Multidiscipl. Optim. 66 (4), 91.CrossRefGoogle Scholar
Clausen, A., Aage, N. & Sigmund, O. 2015 Topology optimization of coated structures and material interface problems. Comput. Meth. Appl. Mech. Engng 290, 524541.CrossRefGoogle Scholar
Deng, Y., Liu, Z., Zhang, P., Liu, Y. & Wu, Y. 2011 Topology optimization of unsteady incompressible Navier–Stokes flows. J. Comput. Phys. 230 (17), 66886708.CrossRefGoogle Scholar
Fu, J., Li, H., Gao, L. & Xiao, M. 2019 a Design of shell-infill structures by a multiscale level set topology optimization method. Comput. Struct. 212, 162172.CrossRefGoogle Scholar
Fu, J., Li, H., Xiao, M., Gao, L. & Chu, S. 2019 b Topology optimization of shell-infill structures using a distance regularized parametric level-set method. Struct. Multidiscipl. Optim. 59 (1), 249262.CrossRefGoogle Scholar
Gersborg-Hansen, A., Sigmund, O. & Haber, R.B. 2005 Topology optimization of channel flow problems. Struct. Multidiscipl. Optim. 30 (3), 181192.CrossRefGoogle Scholar
Guest, J.K. & Prévost, J.H. 2006 Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Intl J. Numer. Meth. Engng 66 (3), 461484.CrossRefGoogle Scholar
Jenkins, N. & Maute, K. 2015 Level set topology optimization of stationary fluid-structure interaction problems. Struct. Multidiscipl. Optim. 52 (1), 179195.CrossRefGoogle Scholar
Jenkins, N. & Maute, K. 2016 An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems. Struct. Multidiscipl. Optim. 54 (5), 11911208.CrossRefGoogle Scholar
Kim, Y.Y. & Yoon, G.H. 2000 Multi-resolution multi-scale topology optimization – a new paradigm. Intl J. Solids Struct. 37 (39), 55295559.CrossRefGoogle Scholar
Lazarov, B.S. & Wang, F. 2017 Maximum length scale in density based topology optimization. Comput. Meth. Appl. Mech. Engng 318, 826844.CrossRefGoogle Scholar
Lundgaard, C., Alexandersen, J., Zhou, M., Andreasen, C.S. & Sigmund, O. 2018 Revisiting density-based topology optimization for fluid-structure-interaction problems. Struct. Multidiscipl. Optim. 58 (3), 969995.CrossRefGoogle Scholar
Picelli, R., Ranjbarzadeh, S., Sivapuram, R., Gioria, R.S. & Silva, E.C.N. 2020 Topology optimization of binary structures under design-dependent fluid-structure interaction loads. Struct. Multidiscipl. Optim. 62 (4), 21012116.CrossRefGoogle Scholar
Picelli, R., Vicente, W.M. & Pavanello, R. 2017 Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads. Finite Elem. Anal. Des. 135, 4455.CrossRefGoogle Scholar
Svanberg, K. 1987 The method of moving asymptotes–a new method for structural optimization. Intl J. Numer. Meth. Engng 24 (2), 359373.CrossRefGoogle Scholar
Walsh, M.J. 1976 Influence of particle drag coefficient on particle motion in high-speed flow with typical laser velocimeter applications. Report. NASA.Google Scholar
Wang, M.Y., Wang, X. & Guo, D. 2003 A level set method for structural topology optimization. Comput. Meth. Appl. Mech. Engng 192 (1), 227246.CrossRefGoogle Scholar
Wang, Y. & Kang, Z. 2018 A level set method for shape and topology optimization of coated structures. Comput. Meth. Appl. Mech. Engng 329, 553574.CrossRefGoogle Scholar
Yoon, G.H. 2010 Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation. Intl J. Numer. Meth. Engng 82 (5), 591616.CrossRefGoogle Scholar
Yoon, G.H. 2013 Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J. Sound Vib. 332 (5), 11721187.CrossRefGoogle Scholar
Yoon, G.H. 2020 Transient sensitivity analysis and topology optimization for particle motion in steady state laminar fluid. Comput. Meth. Appl. Mech. Engng 367, 113096.CrossRefGoogle Scholar
Yoon, G.H. 2022 Transient sensitivity analysis and topology optimization of particle suspended in transient laminar fluid. Comput. Meth. Appl. Mech. Engng 393, 114696.CrossRefGoogle Scholar
Yoon, G.H. & Kim, Y.Y. 2003 The role of s-shape mapping functions in the simp approach for topology optimization. KSME Intl J. 17 (10), 14961506.CrossRefGoogle Scholar
Yoon, G.H., Kim, Y.Y., Bendsøe, M.P. & Sigmund, O. 2004 Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Struct. Multidiscipl. Optim. 27 (3), 139150.CrossRefGoogle Scholar
Yoon, G.H. & So, H. 2021 Development of topological optimization schemes controlling the trajectories of multiple particles in fluid. Struct. Multidiscipl. Optim. 63 (5), 23552373.CrossRefGoogle ScholarPubMed
Yoon, G.H. & Yi, B. 2019 A new coating filter of coated structure for topology optimization. Struct. Multidiscipl. Optim. 60 (4), 15271544.CrossRefGoogle Scholar
Zhang, W., Yuan, J., Zhang, J. & Guo, X. 2016 A new topology optimization approach based on moving morphable components (mmc) and the ersatz material model. Struct. Multidiscipl. Optim. 53 (6), 12431260.CrossRefGoogle Scholar
Zhang, W., Zhong, W. & Guo, X. 2014 An explicit length scale control approach in simp-based topology optimization. Comput. Meth. Appl. Mech. Engng 282, 7186.CrossRefGoogle Scholar
Zhao, X., Zhou, M., Sigmund, O. & Andreasen, C.S. 2018 A ‘poor man's approach’ to topology optimization of cooling channels based on a Darcy flow model. Intl J. Heat. Mass. Transfer 116, 11081123.CrossRefGoogle Scholar
Zhou, M., Lazarov, B.S., Wang, F. & Sigmund, O. 2015 Minimum length scale in topology optimization by geometric constraints. Comput. Meth. Appl. Mech. Engng 293, 266282.CrossRefGoogle Scholar
Zhou, Y., Nomura, T., Dede, E.M. & Saitou, K. 2022 Topology optimization with wall thickness and piecewise developability constraints for foldable shape-changing structures. Struct. Multidiscipl. Optim. 65 (4), 118.CrossRefGoogle Scholar