Skip to main content Accessibility help
Hostname: page-component-684899dbb8-489z4 Total loading time: 0.342 Render date: 2022-05-24T01:04:30.083Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Penetration of boundary-driven flows into a rotating spherical thermally stratified fluid

Published online by Cambridge University Press:  11 February 2019

Grace A. Cox*
School of Environmental Sciences, University of Liverpool, LiverpoolL69 3GP, UK Department of Applied Mathematics, University of Leeds, LeedsLS2 9JT, UK Dublin Institute for Advanced Studies, Geophysics Section, Dublin 2, Ireland
Christopher J. Davies
School of Earth and Environment, University of Leeds, LeedsLS2 9JT, UK
Philip W. Livermore
School of Earth and Environment, University of Leeds, LeedsLS2 9JT, UK
James Singleton
School of Earth and Environment, University of Leeds, LeedsLS2 9JT, UK
Email address for correspondence:


Motivated by the dynamics within terrestrial bodies, we consider a rotating, strongly thermally stratified fluid within a spherical shell subject to a prescribed laterally inhomogeneous heat-flux condition at the outer boundary. Using a numerical model, we explore a broad range of three key dimensionless numbers: a thermal stratification parameter (the relative size of boundary temperature gradients to imposed vertical temperature gradients), $10^{-3}\leqslant S\leqslant 10^{4}$, a buoyancy parameter (the strength of applied boundary heat-flux anomalies), $10^{-2}\leqslant B\leqslant 10^{6}$, and the Ekman number (ratio of viscous to Coriolis forces), $10^{-6}\leqslant E\leqslant 10^{-4}$. We find both steady and time-dependent solutions and delineate the regime boundaries. We focus on steady-state solutions, for which a clear transition is found between a low $S$ regime, in which buoyancy dominates the dynamics, and a high $S$ regime, in which stratification dominates. For the low-$S$ regime, we find that the characteristic flow speed scales as $B^{2/3}$, whereas for high-$S$, the radial and horizontal velocities scale respectively as $u_{r}\sim S^{-1}$, $u_{h}\sim S^{-3/4}B^{1/4}$ and are confined within a thin layer of depth $(SB)^{-1/4}$ at the outer edge of the domain. For the Earth, if lower mantle heterogeneous structure is due principally to chemical anomalies, we estimate that the core is in the high-$S$ regime and steady flows arising from strong outer boundary thermal anomalies cannot penetrate the stable layer. However, if the mantle heterogeneities are due to thermal anomalies and the heat-flux variation is large, the core will be in a low-$S$ regime in which the stable layer is likely penetrated by boundary-driven flows.

JFM Papers
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Amit, H., Choblet, G., Olson, P., Monteux, J., Deschamps, F., Langlais, B. & Tobie, G. 2015 Towards more realistic core-mantle boundary heat flux patterns: a source of diversity in planetary dynamos. Prog. Earth Planetary Sci. 2 (1), 26.CrossRefGoogle Scholar
Ammann, M. W., Walker, A. M., Stackhouse, S., Wookey, J., Forte, A. M., Brodholt, J. P. & Dobson, D. P. 2014 Variation of thermal conductivity and heat flux at the Earth’s core mantle boundary. Earth Planet. Sci. Lett. 390, 175185.CrossRefGoogle Scholar
Aurnou, J. M. & Aubert, J. 2011 End-member models of boundary-modulated convective dynamos. Phys. Earth Planet. Inter. 187 (3), 353363.CrossRefGoogle Scholar
Buffett, B. 2014 Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature 507 (7493), 484487.CrossRefGoogle ScholarPubMed
Buffett, B. A. & Seagle, C. T. 2010 Stratification of the top of the core due to chemical interactions with the mantle. J. Geophys. Res. 115, B04407.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. OUP.Google Scholar
Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Bonnell, K., Miller, M., Weber, G. H., Harrison, C., Pugmire, D., Fogal, T., Garth, C., Sanderson, A., Bethel, E. W., Durant, M., Camp, D., Favrek, J. M., Rubel, O., Navrátil, P., Wheeler, M., Selby, P. & Vivodtzev, F.2012 Visit: an end-user tool for visualizing and analyzing very large data. Tech. Rep., Ernest Orlando Lawrence Berkeley, National Laboratory, Berkeley, CA (US).Google Scholar
Christensen, U. R. 2006 A deep dynamo generating Mercury/’s magnetic field. Nature 444 (7122), 10561058.CrossRefGoogle Scholar
Christensen, U. R. & Wicht, J. 2008 Models of magnetic field generation in partly stable planetary cores: applications to Mercury and Saturn. Icarus 196 (1), 1634.CrossRefGoogle Scholar
Davies, C. J., Gubbins, D. & Jimack, P. K. 2009 Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition. J. Fluid Mech. 641, 335358.CrossRefGoogle Scholar
Davies, C., Pozzo, M., Gubbins, D. & Alfè, D. 2015 Constraints from material properties on the dynamics and evolution of Earth’s core. Nature Geosci. 8 (9), 678.CrossRefGoogle Scholar
Davies, C. J., Gubbins, D. & Jimack, P. K. 2011 Scalability of pseudospectral methods for geodynamo simulations. Concurrency Comput. 23 (1), 3856.CrossRefGoogle Scholar
Dziewonski, A. M. & Anderson, D. L. 1981 Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297356.CrossRefGoogle Scholar
Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. 2010 Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299 (1–2), 6979.CrossRefGoogle Scholar
Garnero, E. J., McNamara, A. K. & Shim, S.-H. 2016 Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nature Geosci. 9 (7), 481489.CrossRefGoogle Scholar
Gibbons, S. J., Gubbins, D. & Zhang, K. 2007 Convection in rotating spherical fluid shells with inhomogeneous heat flux at the outer boundary. Geophys. Astrophys. Fluid Dyn. 101 (5–6), 347370.CrossRefGoogle Scholar
Gibbons, S. J. & Gubbins, D. 2000 Convection in the Earth’s core driven by lateral variations in the core-mantle boundary heat flux. Geophys. J. Intl 142, 631642.CrossRefGoogle Scholar
Gubbins, D. 2007 Geomagnetic constraints on stratification at the top of Earth’s core. EPS 59 (7), 661664.Google Scholar
Gubbins, D., Alfè, D., Davies, C. & Pozzo, M. 2015 On core convection and the geodynamo: effects of high electrical and thermal conductivity. Phys. Earth Planet. Intl 247, 5664.CrossRefGoogle Scholar
Gubbins, D., Alfè, D., Masters, G., Price, D. & Gillan, M. J. 2003 Can the earth’s dynamo run on heat alone? Geophys. J. Intl 155 (2), 609622.CrossRefGoogle Scholar
Gubbins, D & Davies, C. J. 2013 The stratified layer at the core–mantle boundary caused by barodiffusion of oxygen, sulphur and silicon. Phys. Earth Planet. Inter. 215, 2128.CrossRefGoogle Scholar
Gubbins, D., Willis, A. P. & Sreenivasan, B. 2007 Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Intl 162, 256260.CrossRefGoogle Scholar
Holme, R. 2015 Large-scale flow in the core. In Treatise on Geophysics (ed. Schubert, G.), vol. 8, pp. 91113. Elsevier.CrossRefGoogle Scholar
Hunter, J. D. 2007 Matplotlib: a 2D graphics environment. Comput. Sci. Engng 9 (3), 9095.CrossRefGoogle Scholar
Lau, H. C. P., Mitrovica, J. X., Davis, J. L., Tromp, J., Yang, H.-Y. & Al-Attar, D. 2017 Tidal tomography constrains earth’s deep-mantle buoyancy. Nature 551 (7680), 321.CrossRefGoogle ScholarPubMed
Lay, T., Hernlund, J. & Buffett, B. A. 2008 Core–mantle boundary heat flow. Nature Geosci. 1 (1), 2532.CrossRefGoogle Scholar
Livermore, P. W., Bailey, L. M. & Hollerbach, R. 2016 A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell. Sci. Rep. 6, 22812.CrossRefGoogle Scholar
Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A., Busse, F., Christensen, U. R., Davies, C. J., Featherstone, N., Gastine, T., Glatzmaier, G. A., Gubbins, D., Guermond, J.-L., Hayashi, Y.-Y., Hollerbach, R., Hwang, L. J., Jackson, A., Jones, C. A., Jiang, W., Kellogg, L. H., Kuang, W., Landeau, M., Marti, P., Olson, P., Ribeiro, A., Sasaki, Y., Schaeffer, N., Simitev, R. D., Sheyko, A., Silva, L., Stanley, S., Takahashi, F., Takehiro, S., Wicht, J. & Willis, A. P. 2016 Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst. 17 (5), 15861607.CrossRefGoogle Scholar
Metman, M. C., Livermore, P. W. & Mound, J. E. 2018 The reversed and normal flux contributions to axial dipole decay for 1880–2015. Phys. Earth Planet. Inter. 276, 106117.CrossRefGoogle Scholar
Mound, J. E. & Davies, C. J. 2017 Heat transfer in rapidly rotating convection with heterogeneous thermal boundary conditions. J. Fluid Mech. 828, 601629.CrossRefGoogle Scholar
Nakagawa, T. 2011 Effect of a stably stratified layer near the outer boundary in numerical simulations of a magnetohydrodynamic dynamo in a rotating spherical shell and its implications for Earth’s core. Phys. Earth Planet. Inter. 187 (3), 342352.CrossRefGoogle Scholar
Nakagawa, T. 2015 An implication for the origin of stratification below the core–mantle boundary region in numerical dynamo simulations in a rotating spherical shell. Phys. Earth Planet. Inter. 247, 94104.CrossRefGoogle Scholar
Nakagawa, T. & Tackley, P. J. 2008 Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal–chemical-phase boundary layer in 3D spherical convection. Earth Planet. Sci. Lett. 271 (1–4), 348358.CrossRefGoogle Scholar
Nakagawa, T. & Tackley, P. J. 2013 Implications of high core thermal conductivity on Earth’s coupled mantle and core evolution. Geophys. Res. Lett. 40 (11), 26522656.CrossRefGoogle Scholar
Nimmo, F. 2015 Thermal and compositional evolution of the core. In Treatise on Geophysics, 2nd edn. (ed. Schubert, G.), vol. 9, pp. 209219. Elsevier.Google Scholar
Olson, P. 2009 Core dynamics. In Treatise on Geophysics, 1st edn. (ed. Schubert, G.), vol. 8. Elsevier.Google Scholar
Olson, P. & Christensen, U. R. 2002 The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Intl 151 (3), 809823.CrossRefGoogle Scholar
Olson, P., Deguen, R., Rudolph, M. L. & Zhong, S. 2015 Core evolution driven by mantle global circulation. Phys. Earth Planet. Intl 243, 4455.CrossRefGoogle Scholar
Olson, P., Landeau, M. & Reynolds, E. 2017 Dynamo tests for stratification below the core-mantle boundary. Phys. Earth Planet. Inter. 271, 118.CrossRefGoogle Scholar
Otero, J., Wittenberg, R. W., Worthing, R. A. & Doering, C. R. 2002 Bounds on Rayleigh–Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191199.CrossRefGoogle Scholar
Paparella, F. & Young, W. R. 2002 Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205214.CrossRefGoogle Scholar
Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. 2012 Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355358.CrossRefGoogle ScholarPubMed
Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. 2013 Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions. Phys. Rev. B 87 (1), 014110.CrossRefGoogle Scholar
Rückriemen, T., Breuer, D. & Spohn, T. 2015 The Fe snow regime in Ganymede’s core: a deep-seated dynamo below a stable snow zone. J. Geophys. Res. 120 (6), 10951118.CrossRefGoogle Scholar
Sahoo, S. & Sreenivasan, B. 2017 On the effect of laterally varying boundary heat flux on rapidly rotating spherical shell convection. Phys. Fluids 29 (8), 086602.CrossRefGoogle Scholar
Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. 2017 Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Intl 211 (1), 129.CrossRefGoogle Scholar
Schubert, G. & Soderlund, K. M. 2011 Planetary magnetic fields: observations and models. Phys. Earth Planet. Inter. 187 (3–4), 92108.CrossRefGoogle Scholar
Sheard, G. J., Hussam, W. K. & Tsai, T. 2016 Linear stability and energetics of rotating radial horizontal convection. J. Fluid Mech. 795, 135.CrossRefGoogle Scholar
Shishkina, O. 2017 Mean flow structure in horizontal convection. J. Fluid Mech. 812, 525540.CrossRefGoogle Scholar
Shishkina, O., Grossmann, S. & Lohse, D. 2016 Heat and momentum transport scalings in horizontal convection. Geophys. Res. Lett. 43 (3), 12191225.CrossRefGoogle Scholar
Siggers, J. H., Kerswell, R. R. & Balmforth, N. J. 2004 Bounds on horizontal convection. J. Fluid Mech. 517, 5570.CrossRefGoogle Scholar
Sreenivasan, B. 2009 On dynamo action produced by boundary thermal coupling. Phys. Earth Planet. Inter. 177 (3), 130138.CrossRefGoogle Scholar
Sreenivasan, B. & Gubbins, D. 2008 Dynamos with weakly convecting outer layers: implications for core-mantle boundary interaction. Geophys. Astrophys. Fluid Dyn. 102 (4), 395407.CrossRefGoogle Scholar
Sreenivasan, B. & Gubbins, D. 2011 On mantle-induced heat flow variations at the inner core boundary. Phys. Earth Planet. Intl 187 (3), 336341.CrossRefGoogle Scholar
Stanley, S. & Glatzmaier, G. A. 2010 Dynamo models for planets other than earth. Space Sci. Rev. 152, 617649.CrossRefGoogle Scholar
Stanley, S. & Mohammadi, A. 2008 Effects of an outer thin stably stratified layer on planetary dynamos. Phys. Earth Planet. Inter. 168 (3), 179190.CrossRefGoogle Scholar
Stevenson, D. J. 2001 Mars’ core and magnetism. Nature 412 (6843), 214219.CrossRefGoogle ScholarPubMed
Takahashi, F., Tsunakawa, H., Matsushima, M., Mochizuki, N. & Honkura, Y. 2008 Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength. Earth Planet. Sci. Lett. 272 (3), 738746.CrossRefGoogle Scholar
Takehiro, S.-I. & Lister, J. R. 2001 Penetration of columnar convection into an outer stably stratified layer in rapidly rotating spherical fluid shells. Earth Planet. Sci. Lett. 187 (3), 357366.CrossRefGoogle Scholar
Williams, J.-P. & Nimmo, F. 2004 Thermal evolution of the Martian core: implications for an early dynamo. Geology 32 (2), 97100.CrossRefGoogle Scholar
Willis, A. P., Sreenivasan, B. & Gubbins, D. 2007 Thermal core-mantle interaction: exploring regimes for ‘locked’ dynamo action. Phys. Earth Planet. Intl 165 (1), 8392.CrossRefGoogle Scholar
Zhang, K. & Gubbins, D. 1992 On convection in the Earth’s core driven by lateral temperature variations in the lower mantle. Geophys. J. Intl 108 (1), 247255.CrossRefGoogle Scholar
Zhang, K. & Gubbins, D. 1993 Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at infinite Prandtl number. J. Fluid Mech. 250, 209232.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Penetration of boundary-driven flows into a rotating spherical thermally stratified fluid
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Penetration of boundary-driven flows into a rotating spherical thermally stratified fluid
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Penetration of boundary-driven flows into a rotating spherical thermally stratified fluid
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *