Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-07T11:18:54.831Z Has data issue: false hasContentIssue false

Self-diffusiophoretic propulsion of a spheroidal particle in a shear-thinning fluid

Published online by Cambridge University Press:  10 May 2024

Guangpu Zhu
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 117575, Republic of Singapore
Brandon van Gogh
Affiliation:
Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA Department of Energy Science and Engineering, Stanford University, Stanford, CA 94305, USA
Lailai Zhu
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 117575, Republic of Singapore
On Shun Pak*
Affiliation:
Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA Department of Applied Mathematics, Santa Clara University, Santa Clara, CA 95053, USA
Yi Man*
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
*
Email addresses for correspondence: opak@scu.edu, yiman@pku.edu.cn
Email addresses for correspondence: opak@scu.edu, yiman@pku.edu.cn

Abstract

Shear-thinning viscosity is a non-Newtonian behaviour that active particles often encounter in biological fluids such as blood and mucus. The fundamental question of how this ubiquitous non-Newtonian rheology affects the propulsion of active particles has attracted substantial interest. In particular, spherical Janus particles driven by self-diffusiophoresis, a major physico-chemical propulsion mechanism of synthetic active particles, were shown to always swim slower in a shear-thinning fluid than in a Newtonian fluid. In this work, we move beyond the spherical limit to examine the effect of particle eccentricity on self-diffusiophoretic propulsion in a shear-thinning fluid. We use a combination of asymptotic analysis and numerical simulations to show that shear-thinning rheology can enhance self-diffusiophoretic propulsion of a spheroidal particle, in stark contrast to previous findings for the spherical case. A systematic characterization of the dependence of the propulsion speed on the particle's active surface coverage has also uncovered an intriguing feature associated with the propulsion speeds of a pair of complementarily coated particles not previously reported. Symmetry arguments are presented to elucidate how this new feature emerges as a combined effect of anisotropy of the spheroidal geometry and nonlinearity in fluid rheology.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contribute equally to this work.

References

Anderson, J.L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.CrossRefGoogle Scholar
Asmolov, E.S., Nizkaya, T.V. & Vinogradova, O.I. 2022 Self-diffusiophoresis of Janus particles that release ions. Phys. Fluids 34 (3), 032011.CrossRefGoogle Scholar
Baskurt, O.K. & Meiselman, H.J. 2003 Blood rheology and hemodynamics. In Seminars in Thrombosis and Hemostasis (ed. E.F. Mammen), vol. 29, pp. 435–450. Thieme Medical Publishers, Inc.CrossRefGoogle Scholar
Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G. 2016 Active particles in complex and crowded environments. Rev. Mod. Phys. 88 (4), 045006.CrossRefGoogle Scholar
Bird, R.B., Armstrong, R.C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics. John Wiley & Sons, Inc.Google Scholar
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Brown, A. & Poon, W. 2014 Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matt. 10, 40164027.10.1039/C4SM00340CCrossRefGoogle ScholarPubMed
Brown, A.T., Poon, W.C.K., Holm, C. & De Graaf, J. 2017 Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matt. 13 (6), 12001222.CrossRefGoogle ScholarPubMed
Buttinoni, I., Volpe, G., Kümmel, F., Volpe, G. & Bechinger, C. 2012 Active Brownian motion tunable by light. J. Phys.: Condens. Matter 24 (28), 284129.Google ScholarPubMed
Champion, J.A., Katare, Y.K. & Mitragotri, S. 2007 Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA 104 (29), 1190111904.CrossRefGoogle ScholarPubMed
Champion, J.A. & Mitragotri, S. 2006 Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103 (13), 49304934.CrossRefGoogle ScholarPubMed
Choudhary, A., Renganathan, T. & Pushpavanam, S. 2020 Non-Newtonian effects on the slip and mobility of a self-propelling active particle. J. Fluid Mech. 899, A4.CrossRefGoogle Scholar
Daddi-Moussa-Ider, A., Nasouri, B., Vilfan, A. & Golestanian, R. 2021 Optimal swimmers can be pullers, pushers or neutral depending on the shape. J. Fluid Mech. 922, R5.CrossRefGoogle Scholar
Datt, C., Natale, G., Hatzikiriakos, S.G. & Elfring, G.J. 2017 An active particle in a complex fluid. J. Fluid Mech. 823, 675688.CrossRefGoogle Scholar
Datt, C., Zhu, L., Elfring, G.J. & Pak, O.S. 2015 Squirming through shear-thinning fluids. J. Fluid Mech. 784, R1.CrossRefGoogle Scholar
De Corato, M., Arqué, X., Patiño, T., Arroyo, M., Sánchez, S. & Pagonabarraga, I. 2020 Self-propulsion of active colloids via ion release: theory and experiments. Phys. Rev. Lett. 124 (10), 108001.10.1103/PhysRevLett.124.108001CrossRefGoogle Scholar
De Corato, M., Greco, F. & Maffettone, P.L. 2015 Locomotion of a microorganism in weakly viscoelastic liquids. Phys. Rev. E 92 (5), 053008.10.1103/PhysRevE.92.053008CrossRefGoogle ScholarPubMed
Demir, E., Lordi, N., Ding, Y. & Pak, O.S. 2020 Nonlocal shear-thinning effects substantially enhance helical propulsion. Phys. Rev. Fluids 5 (11), 111301.CrossRefGoogle Scholar
Ebbens, S., Gregory, D.A., Dunderdale, G., Howse, J.R., Ibrahim, Y., Liverpool, T.B. & Golestanian, R. 2014 Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Europhys. Lett. 106 (5), 58003.CrossRefGoogle Scholar
Elfring, G.J. & Lauga, E. 2015 Theory of locomotion through complex fluids. In Complex Fluids in Biological Systems: Experiment, Theory, and Computation (ed. S.E. Spagnolie), pp. 283–317. Springer.CrossRefGoogle Scholar
Eloul, S., Poon, W.C.K., Farago, O. & Frenkel, D. 2020 Reactive momentum transfer contributes to the self-propulsion of Janus particles. Phys. Rev. Lett. 124, 188001.CrossRefGoogle Scholar
Fauci, L.J. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38 (1), 371394.CrossRefGoogle Scholar
Gagnon, D.A., Keim, N.C. & Arratia, P.E. 2014 Undulatory swimming in shear-thinning fluids: experiments with Caenorhabditis elegans. J. Fluid Mech. 758, R3.CrossRefGoogle Scholar
Gao, W. & Wang, J. 2014 Synthetic micro/nanomotors in drug delivery. Nanoscale 6 (18), 1048610494.CrossRefGoogle ScholarPubMed
Ghosh, A. & Fischer, P. 2009 Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9 (6), 22432245.CrossRefGoogle ScholarPubMed
Glotzer, S.C. & Solomon, M.J. 2007 Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6 (8), 557562.CrossRefGoogle ScholarPubMed
van Gogh, B., Demir, E., Palaniappan, D. & Pak, O.S. 2022 The effect of particle geometry on squirming through a shear-thinning fluid. J. Fluid Mech. 938, A3.CrossRefGoogle Scholar
Golestanian, R., Liverpool, T.B. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94 (22), 220801.CrossRefGoogle ScholarPubMed
Golestanian, R., Liverpool, T.B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9 (5), 126.CrossRefGoogle Scholar
Gómez, S., Godínez, F.A., Lauga, E. & Zenit, R. 2017 Helical propulsion in shear-thinning fluids. J. Fluid Mech. 812, R3.CrossRefGoogle Scholar
Guo, H., Zhu, H., Liu, R., Bonnet, M. & Veerapaneni, S. 2021 Optimal ciliary locomotion of axisymmetric microswimmers. J. Fluid Mech. 927, A22.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (ed. R.J. Moreau), Mechanics of Fluids and Transport Processes, vol. 1. Springer Science & Business Media.Google Scholar
Howse, J.R., Jones, R.A.L., Ryan, A.J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102.CrossRefGoogle ScholarPubMed
Hwang, S.H., Litt, M. & Forsman, W.C. 1969 Rheological properties of mucus. Rheol. Acta 8 (4), 438448.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88 (6), 062702.CrossRefGoogle Scholar
Jülicher, F. & Prost, J. 2009 Generic theory of colloidal transport. Eur. Phys. J. E 29, 2736.CrossRefGoogle ScholarPubMed
Kagan, D., Calvo-Marzal, P., Balasubramanian, S., Sattayasamitsathit, S., Manesh, K.M., Flechsig, G.-U. & Wang, J. 2009 Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131 (34), 1208212083.CrossRefGoogle ScholarPubMed
Katsamba, P., Butler, M.D., Koens, L. & Montenegro-Johnson, T.D. 2022 Chemically active filaments: analysis and extensions of slender phoretic theory. Soft Matt. 18 (37), 70517063.CrossRefGoogle ScholarPubMed
Keller, S.R. & Wu, T.Y. 1977 A porous prolate-spheroidal model for ciliated micro-organisms. J. Fluid Mech. 80 (2), 259278.CrossRefGoogle Scholar
Lauga, E. 2014 Locomotion in complex fluids: integral theorems. Phys. Fluids 26 (8), 081902.CrossRefGoogle Scholar
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105130.CrossRefGoogle Scholar
Lauga, E. & Michelin, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117, 148001.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Leshansky, A.M., Kenneth, O., Gat, O. & Avron, J.E. 2007 A frictionless microswimmer. New J. Phys. 9 (5), 145.CrossRefGoogle Scholar
Li, G. & Ardekani, A.M. 2015 Undulatory swimming in non-Newtonian fluids. J. Fluid Mech. 784, R4.CrossRefGoogle Scholar
Li, G., Lauga, E. & Ardekani, A.M. 2021 Microswimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 297, 104655.CrossRefGoogle Scholar
Lighthill, J. 1975 Mathematical Biofluiddynamics. SIAM.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Montenegro-Johnson, T.D., Smith, D.J. & Loghin, D. 2013 Physics of rheologically enhanced propulsion: different strokes in generalized Stokes. Phys. Fluids 25 (8), 081903.CrossRefGoogle Scholar
Moran, J.L. & Posner, J.D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49, 511540.CrossRefGoogle Scholar
Natale, G., Datt, C., Hatzikiriakos, S.G. & Elfring, G.J. 2017 Autophoretic locomotion in weakly viscoelastic fluids at finite Péclet number. Phys. Fluids 29 (12), 123102.CrossRefGoogle Scholar
Park, J.-S., Kim, D., Shin, J.H. & Weitz, D.A. 2016 Efficient nematode swimming in a shear thinning colloidal suspension. Soft Matt. 12 (6), 18921897.CrossRefGoogle Scholar
Patiño, T., Arqué, X., Mestre, R., Palacios, L. & Sánchez, S. 2018 Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc. Chem. Res. 51 (11), 26622671.CrossRefGoogle ScholarPubMed
Patteson, A.E., Gopinath, A. & Arratia, P.E. 2016 Active colloids in complex fluids. Curr. Opin. Colloid Interface Sci. 21, 8696.CrossRefGoogle Scholar
Pedley, T.J. 2016 Spherical squirmers: models for swimming micro-organisms. IMA J. Appl. Maths 81, 488521.CrossRefGoogle Scholar
Poehnl, R., Popescu, M.N. & Uspal, W.E. 2020 Axisymmetric spheroidal squirmers and self-diffusiophoretic particles. J. Phys.: Condens. Matter 32 (16), 164001.Google Scholar
Poehnl, R. & Uspal, W. 2021 Phoretic self-propulsion of helical active particles. J. Fluid Mech. 927, A46.CrossRefGoogle Scholar
Popescu, M.N., Dietrich, S., Tasinkevych, M. & Ralston, J. 2010 Phoretic motion of spheroidal particles due to self-generated solute gradients. Eur. Phys. J. E 31 (4), 351367.CrossRefGoogle ScholarPubMed
Purcell, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.CrossRefGoogle Scholar
Qin, K., Peng, Z., Chen, Y., Nganguia, H., Zhu, L. & Pak, O.S. 2021 Propulsion of an elastic filament in a shear-thinning fluid. Soft Matt. 17 (14), 38293839.CrossRefGoogle Scholar
Qu, Z. & Breuer, K.S. 2020 Effects of shear-thinning viscosity and viscoelastic stresses on flagellated bacteria motility. Phys. Rev. Fluids 5 (7), 073103.CrossRefGoogle Scholar
Saad, S. & Natale, G. 2019 Diffusiophoresis of active colloids in viscoelastic media. Soft Matt. 15 (48), 99099919.CrossRefGoogle ScholarPubMed
Sánchez, S., Soler, L. & Katuri, J. 2015 Chemically powered micro- and nanomotors. Angew. Chem. Intl Ed. 54 (5), 14141444.CrossRefGoogle ScholarPubMed
Schwarz-Linek, J., Valeriani, C., Cacciuto, A., Cates, M.E., Marenduzzo, D., Morozov, A.N. & Poon, W.C.K. 2012 Phase separation and rotor self-assembly in active particle suspensions. Proc. Natl Acad. Sci. USA 109 (11), 40524057.CrossRefGoogle ScholarPubMed
Schweitzer, F. & Farmer, J.D. 2003 Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences, vol. 1. Springer.Google Scholar
Shemi, O. & Solomon, M.J. 2018 Self-propulsion and active motion of Janus ellipsoids. J. Phys. Chem. B 122 (44), 1024710255.CrossRefGoogle ScholarPubMed
Spagnolie, S.E. & Underhill, P.T. 2023 Swimming in complex fluids. Annu. Rev. Condens. Matter Phys. 14, 381415.CrossRefGoogle Scholar
Stone, H.A. & Samuel, A.D.T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77 (19), 4102.CrossRefGoogle ScholarPubMed
Sznitman, J. & Arratia, P.E. 2014 Locomotion through complex fluids: an experimental view. In Complex Fluids in Biological Systems: Experiment, Theory, and Computation (ed. S.E. Spagnolie), pp. 245–281. Springer.CrossRefGoogle Scholar
Theers, M., Westphal, E., Gompper, G. & Winkler, R.G. 2016 Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matt. 12 (35), 73727385.CrossRefGoogle ScholarPubMed
Vélez-Cordero, J.R. & Lauga, E. 2013 Waving transport and propulsion in a generalized Newtonian fluid. J. Non-Newtonian Fluid Mech. 199, 3750.CrossRefGoogle Scholar
Wensink, H.H., Kantsler, V., Goldstein, R.E. & Dunkel, J. 2014 Controlling active self-assembly through broken particle-shape symmetry. Phys. Rev. E 89 (1), 010302.CrossRefGoogle ScholarPubMed
Yariv, E. 2019 Self-diffusiophoresis of slender catalytic colloids. Langmuir 36 (25), 69036915.CrossRefGoogle ScholarPubMed
Zhang, L., Abbott, J.J., Dong, L., Peyer, K.E., Kratochvil, B.E., Zhang, H., Bergeles, C. & Nelson, B.J. 2009 Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9 (10), 36633667.CrossRefGoogle ScholarPubMed
Zhou, C., Zhang, H.P., Tang, J. & Wang, W. 2018 Photochemically powered AgCl Janus micromotors as a model system to understand ionic self-diffusiophoresis. Langmuir 34 (10), 32893295.CrossRefGoogle Scholar
Zhu, G. & Zhu, L. 2023 Self-propulsion of an elliptical phoretic disk emitting solute uniformly. J. Fluid Mech. 974, A57.CrossRefGoogle Scholar
Zöttl, A. & Yeomans, J.M. 2019 Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nat. Phys. 15 (6), 554558.CrossRefGoogle Scholar