Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T06:31:07.727Z Has data issue: false hasContentIssue false

Shape dynamics of capsules in two phase-shifted orthogonal ultrasonic standing waves: a numerical investigation

Published online by Cambridge University Press:  30 May 2023

Yifan Liu
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China
Fengxian Xin*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China
*
Email address for correspondence: fengxian.xin@gmail.com, fxxin@mail.xjtu.edu.cn

Abstract

This work investigates the time-averaged shape dynamics of a soft elastic capsule in two phase-shifted orthogonal ultrasonic standing waves. The capsule consists of an elastic membrane that encloses a viscous fluid and is immersed in another viscous fluid. Combining the acoustic perturbation theory of fluid dynamics with the thin-shell mechanics of capsule membrane deformation, two sets of equations are established to govern the ultrasonic propagation and the time-averaged response of the fluid–capsule system, respectively. These governing equations are solved numerically based on the finite element method. Numerical simulations show that the ultrasonic standing waves have pure elongation and pure rotation effects on the initially circular capsule when the phase difference is 0 and ${\rm \pi}/2$, respectively. By setting the phase difference between 0 and ${\rm \pi}/2$, it is found that the initially circular capsule exhibits a tank-treading motion due to the combined effect of the elongation and rotation. The capsule membrane elasticity and internal fluid viscosity have significant effects on the tank-treading behaviour of the initially circular capsule, including elongation deformation, inclination angle and tank-treading velocity. For the initially non-circular capsule, three types of dynamical states, including stable orientation, swinging and tumbling, are predicted by varying the phase difference and intensity of the ultrasonic standing waves, as well as the initial shape, membrane elasticity and internal fluid viscosity of the initially non-circular capsule. This work enriches the cell manipulation capabilities of ultrasonic standing wave micro-acoustofluidics and may inspire new biological applications.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, V., Wunenburger, R., Valier-Brasier, T., Rabaud, D., Kleman, J.P. & Poulain, C. 2016 A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves. Lab Chip 16 (13), 25322539.CrossRefGoogle ScholarPubMed
Augustsson, P., Karlsen, J.T., Su, H.W., Bruus, H. & Voldman, J. 2016 Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556.CrossRefGoogle ScholarPubMed
Bagchi, P. 2007 Mesoscale simulation of blood flow in small vessels. Biophys. J. 92 (6), 18581877.CrossRefGoogle ScholarPubMed
Bagchi, P., Johnson, P.C. & Popel, A.S. 2005 Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. Trans. ASME J. Biomech. Engng 127 (7), 10701080.CrossRefGoogle Scholar
Bernard, I., Doinikov, A.A., Marmottant, P., Rabaud, D., Poulain, C. & Thibault, P. 2017 Controlled rotation and translation of spherical particles or living cells by surface acoustic waves. Lab Chip 17 (14), 24702480.CrossRefGoogle ScholarPubMed
Breyiannis, G. & Pozrikidis, C. 2000 Simple shear flow of suspensions of elastic capsules. Theor. Comput. Fluid Dyn. 13 (5), 327347.CrossRefGoogle Scholar
Bruus, H. 2012 Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12 (1), 2028.CrossRefGoogle ScholarPubMed
Busse, F.H. & Wang, T.G. 1981 Torque generated by orthogonal acoustic waves: theory. J. Acoust. Soc. Am. 69 (6), 16341638.CrossRefGoogle Scholar
Cordasco, D. & Bagchi, P. 2014 Intermittency and synchronized motion of red blood cell dynamics in shear flow. J. Fluid Mech. 759, 472488.CrossRefGoogle Scholar
Ding, X.Y., Peng, Z.L., Lin, S.C.S., Geri, M., Li, S.X., Li, P., Chen, Y.C., Dao, M., Suresh, S. & Huang, T.J. 2014 Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl Acad. Sci. USA 111 (36), 1299212997.CrossRefGoogle ScholarPubMed
Doh, I., Lee, W.C., Cho, Y.H., Pisano, A.P. & Kuypers, F.A. 2012 Deformation measurement of individual cells in large populations using a single-cell microchamber array chip. Appl. Phys. Lett. 100 (17), 173702.CrossRefGoogle ScholarPubMed
Drinkwater, B.W. 2020 A Perspective on acoustical tweezers-devices, forces, and biomedical applications. Appl. Phys. Lett. 117 (18), 180501.CrossRefGoogle Scholar
Elbez, R., Mcnaughton, B.H., Patel, L., Pienta, K.J. & Kopelman, R. 2011 Nanoparticle induced cell magneto-rotation: monitoring morphology, stress and drug sensitivity of a suspended single cancer cell. PLoS ONE 6 (12), e28475.CrossRefGoogle ScholarPubMed
Elliott, C.M. & Stinner, B. 2010 Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (18), 65856612.CrossRefGoogle Scholar
Gossett, D.R., Tse, H.T.K., Lee, S.A., Ying, Y., Lindgren, A.G., Yang, O.O., Rao, J.Y., Clark, A.T. & Di Carlo, D. 2012 Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl Acad. Sci. USA 109 (20), 76307635.CrossRefGoogle ScholarPubMed
Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H.M., Ananthakrishnan, R., Mitchell, D., Kas, J., Ulvick, S. & Bilby, C. 2005 Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88 (5), 36893698.CrossRefGoogle ScholarPubMed
Guglietta, F., Behr, M., Biferale, L., Falcucci, G. & Sbragaglia, M. 2020 On the effects of membrane viscosity on transient red blood cell dynamics. Soft Matter 16 (26), 61916205.CrossRefGoogle ScholarPubMed
Hahn, P., Lamprecht, A. & Dual, J. 2016 Numerical simulation of micro-particle rotation by the acoustic viscous torque. Lab Chip 16 (23), 45814594.CrossRefGoogle ScholarPubMed
Hartono, D., Liu, Y., Tan, P.L., Then, X.Y.S., Yung, L.Y.L. & Lim, K.M. 2011 On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 11 (23), 40724080.CrossRefGoogle ScholarPubMed
Helfrich, W. 1973 Elastic properties of lipid layers: theory and possible experiments. Z. Naturforsch C 28 (11), 693703.CrossRefGoogle Scholar
Ii, S., Shimizu, K., Sugiyama, K. & Takagi, S. 2018 Continuum and stochastic approach for cell adhesion process based on Eulerian fluid-capsule coupling with Lagrangian markers. J. Comput. Phys. 374, 769786.CrossRefGoogle Scholar
Jakobsson, O., Antfolk, M. & Laurell, T. 2014 Continuous flow two-dimensional acoustic orientation of nonspherical cells. Anal. Chem. 86 (12), 61116114.CrossRefGoogle ScholarPubMed
Jayathilake, P.G., Liu, G., Tan, Z.J. & Khoo, B.C. 2011 Numerical study of a permeable capsule under Stokes flows by the immersed interface method. Chem. Engng Sci. 66 (10), 20802090.CrossRefGoogle Scholar
Karlsen, J.T., Augustsson, P. & Bruus, H. 2016 Acoustic force density acting on inhomogeneous fluids in acoustic fields. Phys. Rev. Lett. 117 (11), 114504.CrossRefGoogle ScholarPubMed
Keller, S.R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear-flow. J. Fluid Mech. 120 (JUL), 2747.CrossRefGoogle Scholar
Lenshof, A., Magnusson, C. & Laurell, T. 2012 Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12 (7), 12101223.CrossRefGoogle ScholarPubMed
Li, P. & Huang, T.J. 2019 Applications of acoustofluidics in bioanalytical chemistry. Anal. Chem. 91 (1), 757767.CrossRefGoogle ScholarPubMed
Liu, Y.F. & Xin, F.X. 2022 a Characterization of red blood cell deformability induced by acoustic radiation force. Microfluid. Nanofluid. 26, 7.CrossRefGoogle Scholar
Liu, Y.F. & Xin, F.X. 2022 b Nonlinear large deformation of a spherical red blood cell induced by ultrasonic standing wave. Biomech. Model. Mechanobiol. 21 (2), 589604.CrossRefGoogle ScholarPubMed
Lovmo, M.K., Pressl, B., Thalhammer, G. & Ritsch-Marte, M. 2021 Controlled orientation and sustained rotation of biological samples in a sono-optical microfluidic device. Lab Chip 21 (8), 15631578.CrossRefGoogle Scholar
Luo, Z.Y., Wang, S.Q., He, L., Lu, T.J., Xu, F. & Bai, B.F. 2013 Front tracking simulation of cell detachment dynamic mechanism in microfluidics. Chem. Engng Sci. 97, 394405.CrossRefGoogle Scholar
Mendez, S., Gibaud, E. & Nicoud, F. 2014 An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers. J. Comput. Phys. 256, 465483.CrossRefGoogle Scholar
Mietke, A., Otto, O., Girardo, S., Rosendahl, P., Taubenberger, A., Golfier, S., Ulbricht, E., Aland, S., Guck, J. & Fischer-Friedrich, E. 2015 Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys. J. 109 (10), 20232036.CrossRefGoogle ScholarPubMed
Mishra, P., Hill, M. & Glynne-Jones, P. 2014 Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8 (3), 034109.CrossRefGoogle ScholarPubMed
Muller, P.B., Barnkob, R., Jensen, M.J.H. & Bruus, H. 2012 A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12 (22), 46174627.CrossRefGoogle ScholarPubMed
Nama, N., Huang, T.J. & Costanzo, F. 2017 Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective. J. Fluid Mech. 825, 600630.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269291.CrossRefGoogle Scholar
Raucher, D. & Sheetz, M.P. 1999 Characteristics of a membrane reservoir buffering membrane tension. Biophys. J. 77 (4), 19922002.CrossRefGoogle ScholarPubMed
Rednikov, A.Y., Riley, N. & Sadhal, S.S. 2003 The behaviour of a particle in orthogonal acoustic fields. J. Fluid Mech. 486, 120.CrossRefGoogle Scholar
Salieb-Beugelaar, G.B., Simone, G., Arora, A., Philippi, A. & Manz, A. 2010 Latest developments in microfluidic cell biology and analysis systems. Anal. Chem. 82 (12), 48484864.CrossRefGoogle ScholarPubMed
Shao, D.Y., Rappel, W.J. & Levine, H. 2010 Computational model for cell morphodynamics. Phys. Rev. Lett. 105 (10), 108104.CrossRefGoogle ScholarPubMed
Silva, G.T., Tian, L.F., Franklin, A., Wang, X.J., Han, X.J., Mann, S. & Drinkwater, B.W. 2019 Acoustic deformation for the extraction of mechanical properties of lipid vesicle populations. Phys. Rev. E 99 (6), 063002.CrossRefGoogle ScholarPubMed
Steinmann, P. 2008 On boundary potential energies in deformational and configurational mechanics. J. Mech. Phys. Solids 56 (3), 772800.CrossRefGoogle Scholar
Wijaya, F.B., Mohapatra, A.R., Sepehrirahnama, S. & Lim, K.-M. 2016 Coupled acoustic-shell model for experimental study of cell stiffness under acoustophoresis. Microfluid. Nanofluid. 20 (5), 69.CrossRefGoogle Scholar
Xie, Y.L., Bachman, H. & Huang, T.J. 2019 Acoustofluidic methods in cell analysis. Trac-Trends Anal. Chem. 117, 280290.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Liu and Xin Supplementary Movie 1

See "Liu and Xin Supplementary Movie Captions"

Download Liu and Xin Supplementary Movie 1(Image)
Image 2.3 MB
Supplementary material: Image

Liu and Xin Supplementary Movie 2

See "Liu and Xin Supplementary Movie Captions"

Download Liu and Xin Supplementary Movie 2(Image)
Image 2.2 MB
Supplementary material: Image

Liu and Xin Supplementary Movie 3

See "Liu and Xin Supplementary Movie Captions"

Download Liu and Xin Supplementary Movie 3(Image)
Image 2.2 MB
Supplementary material: PDF

Liu and Xin Supplementary Movie Captions

Liu and Xin Supplementary Movie Captions

Download Liu and Xin Supplementary Movie Captions(PDF)
PDF 116 KB