Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T07:57:31.555Z Has data issue: false hasContentIssue false

Asymmetrical wakes over anisotropic bathymetries

Published online by Cambridge University Press:  01 April 2024

Léo-Paul Euvé*
Affiliation:
PMMH, ESPCI-PSL Univ., CNRS, Sorbonne Univ., Paris Cité Univ., 7 quai St Bernard, 75005 Paris, France
Agnès Maurel
Affiliation:
Institut Langevin, ESPCI-PSL Univ., CNRS, Paris Cité Univ., 1 rue Jussieu, 75005 Paris, France
Philippe Petitjeans
Affiliation:
PMMH, ESPCI-PSL Univ., CNRS, Sorbonne Univ., Paris Cité Univ., 7 quai St Bernard, 75005 Paris, France
Vincent Pagneux
Affiliation:
LAUM, CNRS, Univ. du Mans, Av. O. Messiaen, 72085 Le Mans, France
*
Email address for correspondence: leo-paul.euve@espci.fr

Abstract

The study investigates the impact of a vertically layered bathymetry, consisting of submerged vertical plates, on a ship wake through theoretical analysis and experimental realization. For subwavelength distances between the plates, the analysis relies on a homogenized model that provides an effective, anisotropic, dispersion relation for the propagation of water waves. Our findings reveal that a highly asymmetric wake can be achieved, with the degree of asymmetry contingent upon the ship propagation direction in relation to the plate orientation. This anisotropy is characterized with respect to water depth and to ship length using the dimensionless depth and hull Froude numbers. Laboratory experiments align closely with theoretical predictions, confirming that the asymmetry of the wake can indeed be managed through manipulation of bathymetric conditions.

Type
JFM Rapids
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carusotto, I. & Rousseaux, G. 2013 The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogues. In Analogue Gravity Phenomenology (ed. D. Faccio, F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati & I. Moschella), Lecture Notes in Physics, vol. 870,pp. 109–144. Springer.CrossRefGoogle Scholar
Darmon, A, Benzaquen, M. & Raphaël, E. 2014 Kelvin wake pattern at large Froude numbers. J. Fluid Mech. 738, R3.CrossRefGoogle Scholar
Ellingsen, S.Å. 2014 Ship waves in the presence of uniform vorticity. J. Fluid Mech. 742, R2.CrossRefGoogle Scholar
Havelock, T.H. 1908 The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling disturbance. Proc. R. Soc. Lond. 81 (549), 398430.Google Scholar
Havelock, T.H. 1909 The wave-making resistance of ships: a theoretical and practical analysis. Proc. R. Soc. Lond. 82 (554), 276300.Google Scholar
Li, Y. & Ellingsen, S.Å. 2016 Ship waves on uniform shear current at finite depth: wave resistance and critical velocity. J. Fluid Mech. 791, 539567.CrossRefGoogle Scholar
Li, Y., Smeltzer, B.K. & Ellingsen, S.Å. 2019 Transient wave resistance upon a real shear current. Eur. J. Mech. B/Fluids 73, 180192.CrossRefGoogle Scholar
Luo, C., Ibanescu, M., Johnson, S.G. & Joannopoulos, J.D. 2003 Cerenkov radiation in photonic crystals. Science 299 (5605), 368371.CrossRefGoogle ScholarPubMed
Maier, S.A. 2017 World Scientific Handbook of Metamaterials and Plasmonics (In 4 Volumes), vol. 16. World Scientific.Google Scholar
Marangos, C. & Porter, R. 2021 Shallow water theory for structured bathymetry. Proc. R. Soc. A 477 (2254), 20210421.CrossRefGoogle Scholar
Maurel, A., Marigo, J.-J., Cobelli, P., Petitjeans, P. & Pagneux, V. 2017 Revisiting the anisotropy of metamaterials for water waves. Phys. Rev. B 96 (13), 134310.CrossRefGoogle Scholar
Moisy, F. & Rabaud, M. 2014 Mach-like capillary-gravity wakes. Phys. Rev. E 90 (2), 023009.CrossRefGoogle ScholarPubMed
Moisy, F., Rabaud, M. & Salsac, K. 2009 A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 46 (6), 1021.CrossRefGoogle Scholar
Noblesse, F., He, J., Zhu, Y., Hong, L., Zhang, C., Zhu, R. & Yang, C. 2014 Why can ship wakes appear narrower than Kelvin's angle? Eur. J. Mech. B/Fluids 46, 164171.CrossRefGoogle Scholar
Pethiyagoda, R., McCue, S.W. & Moroney, T.J. 2014 What is the apparent angle of a Kelvin ship wave pattern? J. Fluid Mech. 758, 468485.CrossRefGoogle Scholar
Rabaud, M. & Moisy, F. 2013 Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett. 110 (21), 214503.CrossRefGoogle ScholarPubMed
Smeltzer, B.K., Æsøy, E. & Ellingsen, S.Å. 2019 Observation of surface wave patterns modified by sub-surface shear currents. J. Fluid Mech. 873, 508530.CrossRefGoogle Scholar
Thomson, W. 1887 On ship waves. Proc. Inst. Mech. Engrs 38 (1), 409434.CrossRefGoogle Scholar