Skip to main content Accessibility help

Bending of elastic fibres in viscous flows: the influence of confinement

  • Jason S. Wexler (a1) (a2), Philippe H. Trinh (a3), Helene Berthet (a2), Nawal Quennouz (a2), Olivia du Roure (a2), Herbert E. Huppert (a4) (a5), Anke Lindner (a2) and Howard A. Stone (a1)...


We present a mathematical model and corresponding series of microfluidic experiments examining the flow of a viscous fluid past an elastic fibre in a three-dimensional channel. The fibre’s axis lies perpendicular to the direction of flow and its base is clamped to one wall of the channel; the sidewalls of the channel are close to the fibre, confining the flow. Experiments show that there is a linear relationship between deflection and flow rate for highly confined fibres at low flow rates, which inspires an asymptotic treatment of the problem in this regime. The three-dimensional problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a barrier, with boundary conditions at the barrier that allow for the effects of flexibility and three-dimensional leakage. The analysis yields insight into the competing effects of flexion and leakage, and an analytical solution is derived for the leading-order pressure field corresponding to a slit that partially blocks a two-dimensional channel. The predictions of our model show favourable agreement with experimental results, allowing measurement of the fibre’s elasticity and the flow rate in the channel.


Corresponding author

Email addresses for correspondence:,,


Hide All

The original version of this article was published with A. Lindner’s name incorrectly spelled. A notice detailing this has been published and the error rectified in the online PDF and HTML copies.



Hide All
Ablowitz, M. J. & Fokas, A. S. 2003 Complex Variables: Introduction and Applications. Cambridge University Press.
Alben, S., Shelley, M. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420 (6915), 479481.
Attia, R., Pregibon, D. C., Doyle, P. S., Viovy, J. L. & Bartolo, D. 2009 Soft microflow sensors. Lab on a Chip 9 (9), 12131218.
Autrusson, N., Guglielmini, L., Lecuyer, S., Rusconi, R. & Stone, H. A. 2011 The shape of an elastic filament in a two-dimensional corner flow. Phys. Fluids 23 (6), 063602.
Berthet, H. 2012 Single and collective fibre dynamics in confined microflows. PhD thesis, ESPCI.
Cosentino Lagomarsino, M., Pagonabarraga, I. & Lowe, C. 2005 Hydrodynamic induced deformation and orientation of a microscopic elastic filament. Phys. Rev. Lett. 94 (14), 14.
Day, R. F. & Stone, H. A. 2000 Lubrication analysis and boundary integral simulations of a viscous micropump. J. Fluid Mech. 416, 197216.
Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S. 2007 Stop-flow lithography in a microfluidic device. Lab on a Chip 7 (7), 818828.
Dendukuri, D., Panda, P., Haghgooie, R., Kim, J. M., Hatton, T. A. & Doyle, P. S. 2008 Modelling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules 41 (22), 85478556.
DiLuzio, W. R., Turner, L., Mayer, M., Garstecki, P., Weibel, D. B., Berg, H. C. & Whitesides, G. M. 2005 Escherichia coli swim on the right-hand side. Nature 435 (7046), 1274.
Gervais, T., El-Ali, J., Günther, A. & Jensen, K. F. 2006 Flow-induced deformation of shallow microfluidic channels. Lab on a Chip 6 (4), 500507.
Guglielmini, L., Kushwaha, A., Shaqfeh, E. S. G. & Stone, H. A. 2012 Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids 24 (12), 123601.
Joung, C. G., Phan-Thien, N. & Fan, X. J. 2001 Direct simulation of flexible fibres. J. Non-Newtonian Fluid Mech. 99, 136.
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics. Dover Publications.
Païdoussis, M. P. 2004 Fluid–Structure Interactions, vol. 1–2. Academic Press.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C. 2011 Shear flow past slender elastic rods attached to a plane. International Journal of Solids and Structures 48 (1), 137143.
Qian, B., Powers, T. & Breuer, K. 2008 Shape transition and propulsive force of an elastic rod rotating in a viscous fluid. Phys. Rev. Lett. 100 (7), 078101.
Rusconi, R., Lecuyer, S., Guglielmini, L. & Stone, H. A. 2010 Laminar flow around corners triggers the formation of biofilm streamers. J. Roy. Soc. Int. 7 (50), 12931299.
Semin, B., Hulin, J. P. & Auradou, H. 2009 Influence of flow confinement on the drag force on a static cylinder. Phys. Fluids 21 (10), 103604.
Sneddon, I. N. 1966 Mixed Boundary Value Problems in Potential Theory. Wiley.
Squires, T. & Quake, S. 2005 Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (3), 9771026.
Stockie, J. M. & Green, S. I. 1998 Simulating the motion of flexible pulp fibres using the immersed boundary method. J. Comp. Phys. 147 (1), 147165.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices. Ann. Rev. Fluid Mech. 36 (1), 381411.
Thompson, B. W. 1968 Secondary flow in a Hele–Shaw cell. J. Fluid Mech. 31 (2), 379395.
Tuck, E. O. 1964 A systematic asymptotic expansion procedure for slender ships. J. Ship Res. 8 (1), 639668.
Vanden-Broeck, J.-M. 2010 Gravity-Capillary Free-Surface Flows. Cambridge University Press.
Wandersman, E., Quennouz, N., Fermigier, M., Lindner, A. & du Roure, O. 2010 Buckled in translation. Soft Matt. 6 (22), 5715.
Wiggins, C. & Goldstein, R. 1998 Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80 (17), 38793882.
Young, Y.-N., Downs, M. & Jacobs, C. R. 2012 Dynamics of the primary cilium in shear flow. Biophys. J. 103 (4), 629639.
Yu, T. S., Lauga, E. & Hosoi, A. E. 2006 Experimental investigations of elastic tail propulsion at low Reynolds number. Phys. Fluids 18 (9), 091701.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Bending of elastic fibres in viscous flows: the influence of confinement

  • Jason S. Wexler (a1) (a2), Philippe H. Trinh (a3), Helene Berthet (a2), Nawal Quennouz (a2), Olivia du Roure (a2), Herbert E. Huppert (a4) (a5), Anke Lindner (a2) and Howard A. Stone (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.