Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T10:05:18.782Z Has data issue: false hasContentIssue false

Breather interactions in a three-layer fluid

Published online by Cambridge University Press:  21 February 2023

K. Nakayama*
Affiliation:
Department of Civil Engineering, Kobe University, 1-1 Rokkodai-cho Nada-ku, Kobe, Japan
K.G. Lamb
Affiliation:
Department of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada
*
Email address for correspondence: nakayama@phoenix.kobe-u.ac.jp

Abstract

In a three-layer system with equal upper and lower layer thicknesses that are sufficiently thin and with the same density difference across each interface, breathers have been shown to exist using fully nonlinear governing equations. These breathers are well modelled by theoretical solutions of the mKdV equation, provided the interfaces between the layers do not cross a critical depth. The soliton-like characteristics of fully nonlinear breathers, in particular how two breathers interact, have yet to be explored. Using numerical simulations, this study addresses this shortcoming by studying fully nonlinear overtaking collisions of two breathers in a three-layer symmetric stratification. We apply the fully nonlinear and strongly dispersive FDI-3s internal wave equations, based on a variational principle, in a three-layer system. When the amplitude is small, the analytic breathers fit the wave shapes of the overtaking collision breathers. We find that the larger the upper and lower layer thicknesses are, provided they are below the critical thickness, the more the breathers behave like solitons. We show that an overtaking collision of two breathers is close to elastic.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chow, K.W., Grimshaw, R.H.J. & Ding, E. 2005 Interactions of breathers and solitons in the extended Korteweg–de Vries equation. Wave Motion 43, 158166.CrossRefGoogle Scholar
Clarke, S., Grimshaw, R., Miller, P., Pelinovsky, E. & Talipova, T. 2000 On the generation of solitons and breathers in the modified Korteweg–de Vries equation. Chaos 10, 383392.CrossRefGoogle ScholarPubMed
Didenkulova, E. & Pelinovsky, E. 2020 Interaction features of internal waves breathers in a stratified ocean. Fluids 5, 205.CrossRefGoogle Scholar
Grimshaw, R., Pelinovsky, E. & Talipova, T. 1997 The modified Korteweg–de Vries equation in the theory of large-amplitude internal waves. Nonlinear Process. Geophys. 4, 237250.CrossRefGoogle Scholar
Grimshaw, R., Pelinovsky, E., Talipova, T. & Kurkin, A. 2004 Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34, 27742779.CrossRefGoogle Scholar
Horn, D.A., Imberger, J., Ivey, G.N. & Redekopp, L.G. 2002 A weakly nonlinear model of long internal waves in closed basins. J. Fluid Mech. 467, 269287.CrossRefGoogle Scholar
Horn, D.A., Redekopp, L.G., Imberger, J. & Ivey, G.N. 2000 Internal wave evolution in a space-time varying field. J. Fluid Mech. 424, 279301.CrossRefGoogle Scholar
Jackson, C.R., Da Silva, J.C.B. & Jeans, G. 2012 The generation of nonlinear internal waves. Oceanography 25, 108123.CrossRefGoogle Scholar
Koop, C.G. & Butler, G. 1981 An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 112, 225251.CrossRefGoogle Scholar
Kuetche, V.K. 2015 Barothropic relaxing media under pressure perturbations: nonlinear dynamics. Dyn. Atmos. Oceans 72, 2137.CrossRefGoogle Scholar
Lamb, K.G. 2002 A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech. 451, 109144.CrossRefGoogle Scholar
Lamb, K.G. & Wan, B. 1998 Conjugate flows and flat solitary waves for a continuously stratified fluid. Phys. Fluids 10, 20612079.CrossRefGoogle Scholar
Lamb, K.G. & Wilkie, K.P. 2004 Conjugate flows for waves with trapped cores. Phys. Fluids 16, 46854695.CrossRefGoogle Scholar
Lamb, K.G. 2001 Are solitary internal waves solitons? Stud. Appl. Maths 101, 289308.CrossRefGoogle Scholar
Lamb, K.G., Polukhina, O., Talipova, T., Pelinovsky, E., Xiao, W. & Kurkin, A. 2007 Breather generation in fully nonlinear models of a stratified fluid. Phys. Rev. E 75, 046306.CrossRefGoogle ScholarPubMed
Lamb, K.G. & Yan, L. 1996 The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly-nonlinear theory. J. Phys. Oceanogr. 26, 27122734.2.0.CO;2>CrossRefGoogle Scholar
Lobovikov, P.V., Kurkina, O., Kurkin, A. & Kokoulina, M.V. 2019 Transformation of the first mode breather of internal waves above a bottom step in a three-layer fluid. Izv. Acad. Nauk SSSR Atmos. Ocean. Phys. 55, 650661.CrossRefGoogle Scholar
Michallet, H. & Ivey, G.N. 1999 Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res. 104, 1346713477.CrossRefGoogle Scholar
Nakayama, K. & Kakinuma, T. 2010 Internal waves in a two-layer system using fully nonlinear internal-wave equations. Intl J. Numer Meth. Fluids 62, 574590.Google Scholar
Nakayama, K., Kakinuma, T. & Tsuji, H. 2019 Oblique reflection of large internal solitary waves in a two-layer fluid. Eur. J. Mech. (B/Fluids) 74, 8191.CrossRefGoogle Scholar
Nakayama, K. & Lamb, K.G. 2020 Breathers in a three-layer fluid. J. Fluid Mech. 903, A40.CrossRefGoogle Scholar
Nakayama, K., Tani, K., Yoshimura, H. & Fujita, I. 2022 Effects of vorticity on solitary waves. Sci. Rep. 12, 18524.CrossRefGoogle ScholarPubMed
Nakayama, K. & Tsuji, H. 2021 Resonance of multiple solitary waves. Phys. Fluids 33, 086602.CrossRefGoogle Scholar
Pelinovsky, D. & Grimshaw, R. 1997 Structural transformation of eigenvalues for a perturbed algebraic soliton potential. Phys. Lett. 229, 165172.CrossRefGoogle Scholar
Rouvinskaya, E., Talipova, T., Kurkina, O., Soomere, T. & Tyugin, D. 2015 Transformation of internal breathers in the idealised shelf sea conditions. Cont. Shelf Res. 110, 6071.CrossRefGoogle Scholar
Sakaguchi, S., Nakayama, K., Vu, T.T.T., Komai, K. & Nielsen, P. 2020 Nonlinear wave equations for free surface flow over a bump. Coast. Engng J. 62, 159169.CrossRefGoogle Scholar
Shimizu, K. & Nakayama, K. 2017 Effects of topography and Earth's rotation on the oblique interaction of internal solitary-like waves in the Andaman sea. J. Geophys. Res. 122, 74497465.CrossRefGoogle Scholar
Slyunyaev, A.V. 2001 Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quatratic and positive cubic nonlinearity. J. Expl Theor. Phys. 92 (3), 529534.CrossRefGoogle Scholar
Talipova, T., Kurkina, O., Kurkin, A., Didenkulova, E. & Pelinovsky, E. 2020 Internal wave breathers in the slightly stratified fluid. Microgravity Sci. Technol. 32, 6977.CrossRefGoogle Scholar
Talipova, T., Pelinovsky, E., Lamb, K., Grimshaw, R. & Holloway, P. 1999 Cubic nonlinearity effects in the propagation of intense internal waves. Dokl. Earth Sci. 365, 241244.Google Scholar
Terletska, K., Jung, K.T., Talipova, T., Maderich, V., Brovchenko, I. & Grimshaw, R. 2016 Internal breather-like wave generation by the second mode solitary wave interaction with a step. Phys. Fluids 28, 116602.CrossRefGoogle Scholar
Turkington, B., Eydeland, A. & Wang, S. 1991 A computational method for solitary internal waves in a continuously stratified fluid. Stud. Appl. Maths 85, 93127.CrossRefGoogle Scholar
Vlasenko, V. & Stashchuk, N. 2015 Internal tides near the Celtic Sea Shelf break: a new look at a well known problem. Deep-Sea Res. (I) 103, 2436.CrossRefGoogle Scholar
Wang, L., Li, X., Qi, F.H. & Zhang, L.L. 2015 Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell–Bloch equations. Ann. Phys. 359, 97114.CrossRefGoogle Scholar
Zhang, H.Q., Zhai, B.G. & Wang, X.L. 2012 Soliton and breather solutions of the modified nonlinear Schrödinger equation. Phys. Scr. 85, 015007.CrossRefGoogle Scholar