Skip to main content Accessibility help

Convection in a compressible fluid with infinite Prandtl number

  • Gary T. Jarvis (a1) (a2) and Dan P. Mckenzie (a1)


An approximate set of equations is derived for a compressible liquid of infinite Prandtl number. These are referred to as the anelastic-liquid equations. The approximation requires the product of absolute temperature and volume coefficient of thermal expansion to be small compared to one. A single parameter defined as the ratio of the depth of the convecting layer, d, to the temperature scale height of the liquid, HT, governs the importance of the non-Boussinesq effects of compressibility, viscous dissipation, variable adiabatic temperature gradients and non-hydrostatic pressure gradients. When d/HT [Lt ] 1 the Boussinesq equations result, but when d/HT is O(1) the non-Boussinesq terms become important. Using a time-dependent numerical model, the anelastic-liquid equations are solved in two dimensions and a systematic investigation of compressible convection is presented in which d/HT is varied from 0·1 to 1·5. Both marginal stability and finite-amplitude convection are studied. For d/HT [les ] 1·0 the effect of density variations is primarily geometric; descending parcels of liquid contract and ascending parcels expand, resulting in an increase in vorticity with depth. When d/HT > 1·0 the density stratification significantly stabilizes the lower regions of the marginal state solutions. At all values of d/HT [ges ] 0·25, an adiabatic temperature gradient proportional to temperature has a noticeable stabilizing effect on the lower regions. For d/HT [ges ] 0·5, marginal solutions are completely stabilized at the bottom of the layer and penetrative convection occurs for a finite range of supercritical Rayleigh numbers. In the finite-amplitude solutions adiabatic heating and cooling produces an isentropic central region. Viscous dissipation acts to redistribute buoyancy sources and intense frictional heating influences flow solutions locally in a time-dependent manner. The ratio of the total viscous heating in the convecting system, ϕ, to the heat flux across the upper surface, Fu, has an upper limit equal to d/HT. This limit is achieved at high Rayleigh numbers, when heating is entirely from below, and, for sufficiently large values of d/HT, Φ/Fu is greater than 1·00.



Hide All
Backus, G. E. 1975 Gross thermodynamics of heat engines in the deep interior of the Earth. Proc. Nat. Acad. Sci. U.S.A. 72, 15551558.
Bénard, M. H. 1901 Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Anns Chim. Phys. 7e série, XXIII, 62144.
Birch, F. 1952 Elasticity and constitution of the Earth's interior. J. geophys. Res. 57, 227286.
Boussinesq, J. 1903 Théorie analytique de la Chaleur mise en Harmonie avec la Thermodynamique et avec la Théorie mécanique de la Lumière, tome II, pp. 157176. Paris: Gauthier-Villars.
Busse, F. H. 1967 On the stability of two-dimensional convection in a layer heated from below. J. Math. & Phys. 46, 140150.
Busse, F. H. 1971 Stability regions of cellular fluid flow. Proc. IUTAM Symp., Herrenalb, 1969. In Instability of Continuous Systems (ed. H. Leipholz), pp 4147. Springer.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Clever, R. M. & Busse, F. H. 1974 Transition to time-dependent convection. J. Fluid Mech. 65, 625645.
Froidevaux, C. & Schubert, G. 1975 Plate motion and structure of the continental astheno-sphere: a realistic model of the upper mantle. J. Geophys. Res. 80, 25532564.
Gilbert, F. & Backus, G. E. 1966 Propagator matrices in elastic wave and vibrator problems. Geophys. 31, 326332.
Gough, D. O. 1969 The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448456.
Graham, E. 1975 Numerical simulation of two-dimensional compressible convection. J. Fluid Mech. 70, 689703.
Griggs, D. T. 1972 The sinking lithosphere and the focal mechanism of deep earthquakes. In The Nature of the Solid Earth (ed. E. C. Robertson), pp. 361384. McGraw-Hill.
Hewitt, J. M., McKenzie, D. P. & Weiss, N. O. 1975 Dissipative heating in convective flows. J. Fluid Mech 68, 721738.
Howard, L. N. 1966 Convection at high Rayleigh numbers. In Proc. 11th Int. Cong. Appl. Mech., Munich, 1964 (ed. H. Görtler), pp. 11091115. Springer.
Jeffreys, H. 1926 On the stability of a layer of fluid heated below. Phil. Mag. VII, 2, 833844.
Jeffreys, H. 1928 Some cases of instability in fluid motion. Proc. Roy. Soc. A 118, 195208.
Jeffreys, H. 1930 The instability of a compressible fluid heated below. Proc. Cam. Phil. Soc. 26, 170172.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Low, A. R. 1929 On the criterion for stability of a layer of viscous fluid heated from below. Proc. Roy. Soc. A 125, 180195.
McKenzie, D. P., Roberts, J. M. & Weiss, N. O. 1974 Convection in the Earth's mantle: towards a numerical simulation. J. Fluid Mech. 62, 465538.
McKenzie, D. P. & Weiss, N. O. 1975 Speculations on the thermal and tectonic history of the Earth. Geophys. J. Roy. Astr. Soc. 42, 131174.
Malkus, W. V. R. 1964 Boussinesq equations. Geophys. Fluid Dynamics, Woods Hole Oceanographic Institute Rep. no. 64–46.
Malkus, W. V. R. 1973 Convection at the melting point: a thermal history of the Earth's core. Geophys. Fluid Mech. 4, 267278.
Mihaljan, J. M. 1962 A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys. J. 136, 11261133.
Moore, D. R. 1971 Numerical investigation of astrophysical convection. Ph.D. thesis, University of Cambridge.
Moore, D. R., Peckover, R. S. & Weiss, N. O. 1974 Difference methods for time-dependent two-dimensional convection. Comp. Phys. Commun. 6, 198220.
Moore, D. R. & Weiss, N. O. 1973 Two-dimensional Rayleigh—Bénard convection. J. Fluid Mech. 58, 289312.
Ogura, Y. & Phillips, N. A. 1962 Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173179.
Pellew, A. & Southwell, R. V. 1940 On maintained convective motion in a fluid heated from below. Proc. Roy. Soc. A 176, 312343.
Peltier, W. R. 1972 Penetrative convection in the planetary mantle. Geophys. Fluid Dyn. 5, 4788.
Press, F. 1970 Earth models consistent with geophysical data. Phys. Earth & Planet. Interiors, 3, 322.
Rayleigh, Lord 1916 On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. VI, 32, 529546.
Richter, F. M. 1973 Dynamical models for sea floor spreading. Rev. Geophys. & Space Phys. 11, 223287.
Roberts, K. V. & Weiss, N. O. 1966 Convective difference schemes. Math. Comput. 20, 272299.
Romanelli, M. J. 1960 Runge-Kutta methods for the solution of ordinary differential equations. In Mathematical Methods for Digital Computers (ed. A. Ralston & H. S. Wilf), pp. 110120. Wiley.
Schlüter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.
Schmidt, R. J. & Milverton, S. W. 1935 On the instability of a fluid when heated from below. Proc. Roy. Soc. A 152, 586594.
Schmidt, R. J. & Saunders, O. J. 1938 On the motion of a fluid heated from below. Proc. Roy. Soc. A 165, 216228.
Skilbeck, J. M. 1976 The stability of mantle convection. Ph.D. thesis, University of Cambridge.
Spiegel, E. A. 1971 Convection in stars. I. Basic Boussinesq convection. A. Rev. Astron. & Astrophys. 9, 323352.
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.
Straus, J. M. 1972 Finite amplitude doubly diffusive convection. J. Fluid Mech. 56, 353374.
Turcotte, D. L., Hsui, A. T., Torrance, K. H. & Schubert, G. 1974 Influence of viscous dissipation on Bénard convection. J. Fluid Mech. 64, 369374.
Turcotte, D. L. & Oxburgh, E. R. 1972 Mantle convection and the new global tectonics. Ann. Rev. Fluid Mech. 4, 3368.
MathJax is a JavaScript display engine for mathematics. For more information see

Convection in a compressible fluid with infinite Prandtl number

  • Gary T. Jarvis (a1) (a2) and Dan P. Mckenzie (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.