Skip to main content
    • Aa
    • Aa

Non-invasive measurement of the pressure distribution in a deformable micro-channel

  • Ozgur Ozsun (a1), Victor Yakhot (a1) and Kamil L. Ekinci (a1)

Direct and non-invasive measurement of the pressure distribution in test sections of a micro-channel is a challenging, if not an impossible, task. Here, we present an analytical method for extracting the pressure distribution in a deformable micro-channel under flow. Our method is based on a measurement of the channel deflection profile as a function of applied hydrostatic pressure; this initial measurement generates ‘constitutive curves’ for the deformable channel. The deflection profile under flow is then matched to the constitutive curves, providing the hydrodynamic pressure distribution. The method is validated by measurements on planar microfluidic channels against analytic and numerical models. The accuracy here is independent of the nature of the wall deformations and is not degraded even in the limit of large deflections, ${\zeta }_{max} / 2{h}_{0} = O(1)$, with ${\zeta }_{max} $ and $2{h}_{0} $ being the maximum deflection and the unperturbed height of the channel, respectively. We discuss possible applications of the method in characterizing micro-flows, including those in biological systems.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. D. Bertram & J. Tscherry 2006 The onset offlow-rate limitation and flow-induced oscillations in collapsible tubes. J. Fluids Struct. 22, 10291045.

P. W. Carpenter & T. J. Pedley  (Eds) 2003 IUTAM Symposium on Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Kluwer.

L. Deck & P. de Groot 1994 High-speed noncontact profiler based on scanning white light interferometry. Appl. Opt. 33, 73347338.

K. L. Ekinci , D. M. Karabacak & V. Yakhot 2008 Universality in oscillating flows. Phys. Rev. Lett. 101, 264501.

T. Gervais , J. El-Ali , A. Günther & F. K. Jensen 2006 Flow-induced deformation of shallow microfluidic channels. Lab on a Chip 6, 500507.

J. B. Grotberg & O. E. Jensen 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.

B. S. Hardy , K. Uechi , J. Zhen & H. P. Kavehpour 2009 The deformation of flexible PDMS microchannels under a pressure driven flow. Lab on a Chip 9, 935938.

M. Heil & O. Jensen 2003 Flows in deformable tubes and channels – theoretical models and biological applications. In IUTAM Symposium on Flow Past Highly Compliant Boundaries and in Collapsible Tubes (ed. P. W. Carpenter & T. J. Pedley), chap. 2, pp. 1550. Kluwer.

D. P. Holmes , B. Tavakol , G. Froehlicher & H. A. Stone 2013 Control and manipulation of microfluidic flow via elastic deformations. Soft Matter 9, 70497053.

A. E. Hosoi & L. Mahadevan 2004 Peeling, heeling, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802.

L. Huang 2001 Viscous flutter of a finite elastic membrane in Poiseuille flow. J. Fluids Struct. 15, 10611088.

M. C. Kohl , S. I. Abdel-Khalik , S. M. Jeter & D. L. Sadowski 2005 A microfluidic experimental platform with internal pressure measurements. Sensors Actuators A Phys. 118, 212221.

D. N. Ku 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.

J. C. Lasheras 2007 The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293319.

C. Lissandrello , V. Yakhot & K. L. Ekinci 2012 Crossover from hydrodynamics to the kinetic regime in confined nanoflows. Phys. Rev. Lett. 108, 084501.

B. J. McKeon 2007 Velocity, vorticity, and Mach number. In Springer Handbook of Experimental Fluid Mechanics (ed. A. Yarin, C. Tropea & J. F. Foss), chap. 5, pp. 215471. Springer.

A. Orth , E. Schonbrun & K. B. Crozier 2011 Multiplexed pressure sensing with elastomer membranes. Lab on a Chip 11, 38103815.

T. Pedley & X. Y. Lou 1998 Modelling flow and oscillations in collapsible tubes. Theor. Comput. Fluid Dyn. 10, 277294.

A. S. Popel & P. C. Johnson 2005 Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 4369.

A. Sampathkumar , K. L. Ekinci & T. W. Murray 2011 Multiplexed optical operation of distributed nanoelectromechanical systems arrays. Nano Lett. 11, 10141019.

R. B. Schoch , J. Han & P. Renaud 2008 Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839883.

M. Shelley , N. Vanderberghe & J. Zhang 2005 Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett. 94, 094302.

W. Song & D. Psaltis 2011 Optofluidic membrane interferometer: a imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip. Biomicrofluidics 5, 044110.

N. Srivastava & M. A. Burns 2007 Microfluidic pressure sensing using trapped air compression. Lab on a Chip 7, 633637.

H. A. Stone , A. D. Stroock & A. Ajdari 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.

S. P. Sutera & R. Skalak 1993 The history of Poiseuille’s law. Annu. Rev. Fluid Mech. 25, 120.

G. M. Whitesides & A. D. Stroock 2001 Flexible methods for microfluidics. Phys. Today 54, 4248.

R. J. Whittaker , M. Heil , O. E. Jensen & S. L. Waters 2010 A rational derivation of a tube law from shell theory. Q. J. Mech. Appl. Maths 63, 465496.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *