Skip to main content
×
Home
    • Aa
    • Aa

Dynamical flow characterization of transitional and chaotic regimes in converging–diverging channels

  • A. M. Guzmán (a1) and C. H. Amon (a1)
Abstract

Numerical investigation of laminar, transitional and chaotic flows in converging–diverging channels are performed by direct numerical simulations in the Reynolds number range 10 < Re < 850. The temporal flow evolution and the onset of turbulence are investigated by combining classical fluid dynamics representations with dynamical system flow characterizations. Modern dynamical system techniques such as timedelay reconstructions of pseudophase spaces, autocorrelation functions, fractal dimensions and Eulerian Lyapunov exponents are used for the dynamical flow characterization of laminar, transitional and chaotic flow regimes. As a consequence of these flow characterizations, it is verified that the transitional flow evolves through intermediate states of periodicity, two-frequency quasi-periodicity, frequency-locking periodicity, and multiple-frequency quasi-periodicity before reaching a non-periodic unpredictable behaviour corresponding to low-dimensional deterministic chaos.

Qualitative and quantitative differences in Eulerian dynamical flow parameters are identified to determine the predictability of transitional flows and to characterize chaotic, weak turbulent flows in converging–diverging channels. Autocorrelation functions, pseudophase space representations and Poincaré maps are used for the qualitative identification of chaotic flows, assertion of their unpredictable nature, and recognition of the topological structure of the attractors for different flow regimes. The predictability of transitional flows is determined by analysing the autocorrelation functions and by representing their attractors in the reconstructed pseudophase spaces. The transitional flow behaviour is examined by the geometric visualization of the evolution of the attractors and Poincaré maps until the appearance of a strange attractor at the onset of chaos. Eulerian Lyapunov exponents and fractal dimensions are quantitative parameters to establish the onset of chaos, the persistence of chaotic flow behaviour, and the long-term persistent unpredictability of chaotic Eulerian flow regimes. Lastly, three-dimensional simulations for converging–diverging channel flow are performed to determine the effect of the spanwise direction on the route of transition to chaos.

Copyright
References
Hide All
Amon, C. H. 1993 Spectral element—Fourier method for transitional flows in complex geometries. AIAA J. 31(1), 42.
Amon, C. H. 1995 Spectral element—Fourier method for unsteady conjugate heat transfer in complex geometry flows. AIAA J. Thermophys. Heat Transfer 9(2), 247.
Amon, C. H., Guzmán, A. M. & Morel, B. 1996 Lagrangian chaos, Eulerian chaos and mixing enhancement in converging—diverging channel flows. Phys. Fluids 8(5), 1192.
Amon, C. H., Herman, C. V., Majumdar, D., Mayinger, F., Mikic, B. B. & Sekulic, D. 1992 Numerical and experimental studies of oscillatory flows in communicating channels. Intl J. Heat Mass Transfer 35(11), 239.
Amon, C. H. & Mikic, B. B. 1990 Numerical prediction of convective heat transfer in self-sustained oscillatory flow. AIAA J. Thermophys. Heat Transfer 4, 239.
Amon, C. H. & Patera, A. T. 1989 Numerical calculation of stable three-dimensional tertiary states in grooved-channel flow. Phys. Fluids A 1, 2005.
Babbiano, A., Boffeta, G., Provenzale, A. & Vulpiani, A. 1994 Chaotic advection in point vortex models and two-dimensional turbulence. Phys. Fluids 6, 2465.
Barna, G. & Tsuda, I. 1993 A new method for computing Lyapunov exponents. Phys. Lett. A 175, 421.
Batcho, P. & Karniadakis, G. E. 1991 Chaotic transport in two- and three-dimensional flow past a cylinder. Phys. Fluids A 3, 1051.
Bergé, P., Pomeau, Y. & Vidal, C. 1986 Order within Chaos. Wiley, New York.
Brandstater, A. & Swinney, H. L. 1987 Strange attractors in weakly turbulent Couette—Taylor flow. Phys. Rev. A 35(5), 2207.
Briggs, K. 1990 An improved method for estimating Liapunov exponents of chaotic time series. Phys. Lett. A 151, 27.
Broze, G. & Hussain, F. 1994 Nonlinear dynamics of forced transitional jets: periodic and chaotic attractors. J. Fluid. Mech. 263, 93.
Crisanti, T. J., Falcioni, M., Vulpiani, A. & Paladin, G. 1991 Lagrangian chaos: transport, mixing and diffusion in fluids. Riv. Nuovo Cimento 14, 1.
Danielson, T. J. & Ottino, J. M. 1990 Structural stability in two-dimensional model flows: Lagrangian and Eulerian turbulence. Phys. Fluids A 2, 2024.
Ditto, W. L. & Pecora, L. M. 1993 Mastering chaos. Sci. Am. 269, 78.
Douglas, J. 1992 Seeking order in chaos. Electric Power Res. Inst. J. 17, 5.
Eckmann, J. P. 1981 Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53, 643.
Eckmann, J. P., Kamphorst, S. O., Ruelle, D. & Ciliberto, S. 1986 Liapunov exponents from time series. Phys. Rev. A 34, 4971.
Faghri, M. & Asako, Y. 1987 Numerical determination of heat transfer and pressure drop characteristics for a converging—diverging flow channel. Trans. ASME C: J. Heat Transfer 19, 606.
Feder, J. 1988 Fractal. Plenum Press, New York.
Feigenbaum, M. 1980 The transition to aperiodic behavior in turbulent systems. Commun. Math. Phys. 77, 65.
Frederickson, P., Kaplan, J. A., Yorke, E. D. & Yorke, J. A. 1983 The Liapunov dimension of strange attractors. J. Diffl Equat. 49, 185.
Gaspard, P. & Wang, X. J. 1993 Noise, chaos, and (e,t)- entropy per unit time. Phys. Lett. 235(6), 291.
Gollub, J. P. & Benson, S. H. 1980 Many routes to turbulent convection. J. Fluid Mech. 100, 449.
Gollub, J. P. & Swinney, H. L. 1975 Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927.
Gorman, M, Reith, L. A. & Swinney, H. L. 1980 Modulation patterns, multiple frequencies and other phenomena in circular Couette flow. Ann. NY Acad. Sci. 357, 10.
Grassberger, P. & Procaccia, I. 1983 Measuring the strangeness of strange attractors. Physica 9D, 189.
Greiner, M., Chen, R. F. & Wirtz, R. A. 1991 Enhanced heat transfer/pressure drop measured from a flat surface in a grooved channel. Trans. ASME C: J. Heat Transfer 113, 498.
Guzmán, A. M. 1995 Lagrangian and Eulerian characterization of converging—diverging channel flows: chaos, mixing, and heat transfer enhancement. PhD thesis, Department of Mechanical Engineering, Carnegie Mellon University.
Guzmán, A. M. & Amon, C. H. 1993 Flow patterns and forced convective heat transfer in converging—diverging channels. 1993 ASME Heat Transfer Conf. Atlanta, Georgia. In Natural and Forced Convective (ed. M. F. Modest et al.), ASME-HTD, 237, 45.
Guzmán, A. M. & Amon, C. H. 1994a Transition to chaos in converging—diverging channel flows: Ruelle—Takens—Newhouse scenario. Phys. Fluids A 6, 1994.
Guzmán, A. M. & Amon, C. H. 1994b Periodic, quasiperiodic and chaotic regimes in converging—diverging open channel flows. 1994 Intl Mech. Engng Congress and Exposition. In Chaos in Heat Transfer and Fluid Dynamics (ed. V. S. Arpaci et al.), ASME-HTD, 298, 47.
Hattler, B. G., Johnson, P. C., Sawzik, P. J., Shaffer, F. D., Klain, M., Lund, L. W., Reeder, G. D., Walters, F. R., Goode, J. S. & Borovetz, H. S. 1992 Respiratory Dialysis: A new Concept in Pulmonary Support. American Society for Artificial Internal Organs Journal 38, 322.
Hurst, H. E. 1951 Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Engrs 116, 770.
Keefe, L., Moin, P. & Kim, J. 1992 The dimension of attractors underlying periodic turbulent Poiseuille flow. J. Fluid Mech. 242, 1.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 30.
McLaughlin, J. B. & Orszag, S. A. 1982 Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122, 123.
Manneville, P. & Pomeau, Y. 1980 Different ways to turbulence in dissipative dynamical systems. Physica D 1, 219.
Moon, F. C. 1992 Chaotic and Fractal Dynamics. An Introduction for Applied Scientists and Engineers. Wiley.
Nishimura, T., Murakami, S., Arakawa, S. & Kawamura, Y. 1990 Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate Reynolds number for steady flow. Intl J. Heat Mass Transfer 33, 835.
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.
Ottino, J. M. 1992 New applications of chaos in chemical engineering: intuition versus preduction. In Applied Chaos (ed. J. H. Kim & J. Stringer). Wiley.
Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C. & Kusch, H. 1992 Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing processes. Science 257, 754.
Packard, N. H., Crutchfield, J. P., Farmer, J. D. & Shaw, R. S. 1980 Geometry from a time series. Phys. Rev. Lett. 45, 712.
Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468.
Pfister, G., Buzug, T. & Enge, N. 1992 Characterization of experimental time series from Taylor—Couette flow. Physica D 58, 441.
Pulliam, T. H. & Vastano, J. A. 1993 Transition to chaos in an open unforced 2D flow. J. Comput. Phys. 105, 133.
Ralph M. E. 1986 Oscillatory flows in wavy-walled tubes. J. Fluid Mech. 168, 515.
Rayleigh, J. W. S. 1945 The Theory of Sound, reprint of 2nd edn. Dover, New York.
Rom-Kedar, V., Leonard, A. & Wiggins, S. 1990 An analytical study of transport, mixing, and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347.
Rosenstein, M., Collins, J. J. & De Luca, C. J. 1993 A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117.
Ruelle, D. 1980 Strange attractors. The Mathematical Intelligencer 2, 126.
Ruelle, D. 1992 Chaotic Evolution and Strange Attractors. Cambridge University Press.
Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20, 167.
Schatz, M. F. & Swinney, H. L. 1992 Secondary instability in plane channel flow with spatially periodic perturbations. Phys. Rev. Lett. 69, 434.
Schepers, H. E., van Beck, J. H. G. M. & Bassingthwaighte, J. B. 1992 Four methods to estimate the fractal dimension from self-affine signals. IEEE J. Engng Medicine Biol. 57.
Shinbrot, T., Grebogi, C., Ott, E. & Yorke, J. A. 1993 Using small perturbations to control chaos. Nature 363, 441.
Sobey, I. J. 1980 On flow through furrowed channels. Part 1. Calculated flow patterns: J. Fluid Mech. 96, 1.
Sobey, I. J. 1982 Oscillatory flow at intermediate Strouhal number in asymmetric channels. J. Fluid Mech. 125, 359.
Sobey, I. J. 1985 Dispersion caused by separation during oscillatory flow through a furrowed channel. Chem. Engng Sci. 40, 2129.
Sparrow, E. M. & Prata, A. T. 1983 Numerical solutions for laminar flow and heat transfer in a periodically converging—diverging tube with experimental confirmation. Numer. Heat Transfer 6, 441.
Stephanoff, K. D., Sobey, I. J. & Bellhouse, B. J. 1980 On flow through furrowed channels. Part 2. Observed flow patterns. J. Fluid Mech. 96, 27.
Takens, F. 1981 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, vol. 898, p. 336, Springer.
Vastano, J. A. & Moser, R. D. 1991 Short-time Lyapunov exponent analysis and the transition to chaos in Taylor—Couette flow. J. Fluid Mech. 223, 83.
Vittori, G. & Blondeaux, P. 1993 Quasiperiodicity and phase locking route to chaos in the 2-D oscillatory flow around a circular cylinder. Phys. Fluids A 5, 1866.
Walden, R. W., Kolodner, P., Passner, A. & Surko, C. M. 1984 Nonchaotic Rayleigh—Bénard convection with four and five incommensurate frequencies. Phys. Rev. Lett. 53, 242.
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. 1985 Determining Lyapunov exponents from a time series. Physica D 16, 285.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.