Skip to main content
×
×
Home

Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis

  • JEFFREY L. MORAN (a1) and JONATHAN D. POSNER (a1)
Abstract

Mitchell originally proposed that an asymmetric ion flux across an organism's membrane could generate electric fields that drive locomotion. Although this locomotion mechanism was later rejected for some species of bacteria, engineered Janus particles have been realized that can swim due to ion fluxes generated by asymmetric electrochemical reactions. Here we present governing equations, scaling analyses and numerical simulations that describe the motion of bimetallic rod-shaped motors in hydrogen peroxide solutions due to reaction-induced charge auto-electrophoresis. The coupled Poisson–Nernst–Planck–Stokes equations are numerically solved using Frumkin-corrected Butler–Volmer equations to represent electrochemical reactions at the rod surface. Our simulations show strong agreement with the scaling analysis and experiments. The analysis shows that electrokinetic locomotion results from electro-osmotic fluid slip around the nanomotor surface. The electroviscous flow is driven by electrical body forces which are generated from a coupling of a reaction-induced dipolar charge density distribution and the electric field it creates. The magnitude of the electroviscous velocity increases quadratically with the surface reaction rate for an uncharged motor, and linearly when the motor supports a finite surface charge.

Copyright
Corresponding author
Email address for correspondence: jposner@asu.edu
References
Hide All
Anderson, J. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 61100.
Anderson, J., Lowell, M. & Prieve, D. 1982 Motion of a particle generated by chemical gradients. Part 1. Non-electrolytes. J. Fluid Mech. 117, 107121.
Babich, Y., Dukhin, S. & Tarovsky, A. 1989 The 2nd-kind electrophoresis in strong fields. Dopovidi Akademii Nauk Ukrainskoi RSR Seriya B-Geologichni Khimichni Ta Biologichni Nauki (7), 2932.
Balasubramanian, S., Kagan, D., Manesh, K. M., Calvo-Marzal, P., Flechsig, G. & Wang, J. 2009 Thermal modulation of nanomotor movement. Small 5 (13), 15691574.
Baran, A., Babich, Y., Tarovsky, A. & Mishchuk, N. 1992 Superfast electrophoresis of ion-exchanger particles. Colloids Surf. 68 (3), 141151.
Barany, S., Mishchuk, N. A. & Prieve, D. C. 1998 Superfast electrophoresis of conducting dispersed particles. J. Colloid Interface Sci. 207 (2), 240250.
Bard, A. J. & Faulkner, L. R. 2000 Electrochemical Methods: Fundamentals and Applications, 2nd edn. Wiley.
Bazant, M. Z., Chu, K. T. & Bayly, B. J. 2005 Current-voltage relations for electrochemical thin films. SIAM J. Appl. Maths 65 (5), 14631484.
Bazant, M. Z. & Squires, T. M. 2004 Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Phys. Rev. Lett. 92 (6), 066101.
Biesheuvel, P., van Soestbergen, M. & Bazant, M. 2009 Imposed currents in galvanic cells. Electrochim. Acta 54 (21), 48574871.
Bonnefont, A., Argoul, F. & Bazant, M. 2001 Analysis of diffuse-layer effects on time-dependent interfacial kinetics. J. Electroanalyt. Chem. 500 (1–2, Sp. Iss. SI), 5261.
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9 (1), 339398.
Burdick, J., Laocharoensuk, R., Wheat, P. M., Posner, J. D. & Wang, J. 2008 Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc. 130 (26), 81648165.
Calvo-Marzal, P., Manesh, K. M., Kagan, D., Balasubramanian, S., Cardona, M., Flechsig, G., Posner, J. & Wang, J. 2009 Electrochemically-triggered motion of catalytic nanomotors. Chem. Commun. (30), 45094511.
Catchmark, J. M., Subramanian, S. & Sen, A. 2005 Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small 1 (2), 202206.
Chang, H. & Jaffé, G. 1952 Polarization in electrolytic solutions. Part I. Theory. J. Chem. Phys. 20 (7), 10711077.
Córdova-Figueroa, U. M. & Brady, J. F. 2008 Osmotic propulsion: The osmotic motor. Phys. Rev. Lett. 100 (15), 158303.
Delahay, P. 1965 Double Layer and Electrode Kinetics. Interscience.
Derjaguin, B., Dukhin, S. & Korotkova, A. 1961 Diffusiophoresis in electrolyte solutions and its role in mechanism of film formation from rubber latexes by method of ionic deposition. Kolloidn. Z. 23 (1), 53.
Derjaguin, B. V., Sidorenkov, G., Zubashchenkov, E. & Kiseleva, E. 1947 Kinetic phenomena in boundary films of liquids. Kolloidn. Z. 9 (5), 335348.
Dhopeshwarkar, R., Hlushkou, D., Nguyen, M., Tallarek, U. & Crooks, R. M. 2008 Electrokinetics in microfluidic channels containing a floating electrode. J. Am. Chem. Soc. 130 (32), 1048010481.
Dougherty, G. M., Rose, K. A., Tok, J. B. H., Pannu, S. S., Chuang, F. Y. S., Sha, M. Y., Chakarova, G. & Penn, S. G. 2008 The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution. Electrophoresis 29 (5), 11311139.
Dukhin, S., Babich, Y. & Baran, A. 1988 Electrophoresis of the 2nd kind in a Hydrodynamic Flow. Colloid J. USSR 50 (5), 890891.
Dukhin, S. & Mishchuk, N. 1987 Unrestricted increase in the current through a granule of an ion-exchanger. Colloid J. USSR 49 (6), 10471049.
Dukhin, S. & Mishchuk, N. 1989 Disappearance of limiting current phenomenon in the case of a granule of an ion exchanger. Colloid J. USSR 51 (4), 570581.
Dukhin, S. & Mishchuk, N. 1990 Concentration polarization of conducting particle in strong fields. Colloid J. USSR 52 (3), 390393.
Dukhin, S., Mishchuk, N., Tarovsky, A. & Baran, A. 1987 The 2nd-kind Electrophoresis. Dopovidi Akademii Nauk Ukrainskoi RSR Seriya B-Geologichni Khimichni Ta Biologichni Nauki (12), 4244.
Duval, J. F. L. 2004 Electrokinetics of the amphifunctional metal/electrolyte solution interface in the presence of a redox couple. J. Colloid Interface Sci. 269 (1), 211223.
Duval, J. F. L., Buffle, J. & van Leeuwen, H. P. 2006 Quasi-reversible faradaic depolarization processes in the electrokinetics of the metal/solution interface. J. Phys. Chem. B 110 (12), 60816094.
Duval, J. F. L., Huijs, G. K., Threels, W. F., Lyklema, J. & van Leeuwen, H. P. 2003 a Faradaic depolarization in the electrokinetics of the metal-electrolyte solution interface. J. Colloid Interface Sci. 260 (1), 95106.
Duval, J. F. L., van Leeuwen, H. P., Cecilia, J. & Galceran, J. 2003 b Rigorous analysis of reversible faradaic depolarization processes in the electrokinetics of the metal/electrolyte solution interface. J. Phys. Chem. B 107 (28), 67826800.
Gibbs, J. G. & Zhao, Y. P. 2009 Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94 (16), 163104.
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94 (22), 220801.
Gray, J. 1968 Animal Locomotion. Norton.
Green, N. G. & Jones, T. B. 2007 Numerical determination of the effective moments of non-spherical particles. J. Phys. D - Appl. Phys. 40 (1), 7885.
Harold, F. M., Bronner, F. & Kleinzeller, C. L. S. A. 1982 Pumps and currents: A biological perspective. In Electrogenic Ion Pumps, Current Topics in Membranes and Transport, vol. 16, pp. 485516. Academic.
Henry, D. C. 1931 The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc. R. Soc. Lond. Ser. A, Containing Papers of a Math. Phys. Character 133 (821), 106129.
Hlushkou, D., Perdue, R. K., Dhopeshwarkar, R., Crooks, R. M. & Tallarek, U. 2009 Electric field gradient focusing in microchannels with embedded bipolar electrode. Lab on a Chip 9 (13), 19031913.
Hoburg, J. F. & Melcher, J. R. 1976 Internal electrohydrodynamic instability and mixing of fluids with orthogonal field and conductivity gradients. J. Fluid Mech. 73 (2), 333351.
Hunter, R. J. 1987 Foundations of Colloid Science, 1st edn., vol. 1. Oxford University Press.
Hunter, R. J. 2001 Foundations of Colloid Science, 2nd edn. Oxford University Press.
Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. 2002 Autonomous movement and self-assembly. Angew. Chem. Intl Ed. 41 (4), 652654.
Jaffe, L. & Nuccitelli, R. 1974 Ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63 (2), 614628.
Jones, T. B. 1995 Electromechanics of Particles. Cambridge University Press.
Kagan, D., Calvo-Marzal, P., Balasubramanian, S., Sattayasamitsathit, S., Manesh, K. M., Flechsig, G. & Wang, J. 2009 Chemical sensing based on catalytic nanomotors: Motion-Based detection of trace silver. J. Am. Chem. Soc. 131 (34), 1208212083.
Keller, A. A., Wang, H., Zhou, D., Lenihan, H. S., Cherr, G., Cardinale, B. J., Miller, R. & Ji, Z. 2010 Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44 (6), 19621967.
Kline, T. R., Iwata, J., Lammert, P. E., Mallouk, T. E., Sen, A. & Velegol, D. 2006 Catalytically driven colloidal patterning and transport. J. Phys. Chem. B 110 (48), 2451324521.
Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. 2005 a Catalytic nanomotors: Remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Intl Edn 44 (5), 744746.
Kline, T. R., Paxton, W. F., Wang, Y., Velegol, D., Mallouk, T. E. & Sen, A. 2005 b Catalytic micropumps: Microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 127 (49), 1715017151.
Lammert, P. E., Prost, J. & Bruinsma, R. 1996 Ion drive for vesicles and cells. J. Theor. Biol. 178 (4), 387391.
Laocharoensuk, R., Burdick, J. & Wang, J. 2008 Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2 (5), 10691075.
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.
Laws, D. R., Hlushkou, D., Perdue, R. K., Tallarek, U. & Crooks, R. M. 2009 Bipolar electrode focusing: Simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode. Anal. Chem. 81 (21), 89238929.
Lin, H., Storey, B. D., Oddy, M. H., Chen, C. H. & Santiago, J. G. 2004 Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16 (6), 19221935.
Lund, E. 1947 Bioelectric Fields and Growth. University of Texas Press.
Mano, N. & Heller, A. 2005 Bioelectrochemical propulsion. J. Am. Chem. Soc. 127 (33), 1157411575.
Melcher, J. & Taylor, G. 1969 Electrohydrodynamics - a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.
Mishchuk, N. & Dukhin, S. 1990 Space-charge of a conducting particle in the over-limit current regime. Colloid J. USSR 52 (3), 427431.
Mishchuk, N. & Takhistov, P. 1995 Electroosmosis of the 2nd kind. Colloids Surf. A-Physicochem. Engng Aspects 95 (2–3), 119131.
Mitchell, P. 1956 Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in micro-organisms. Proc. R. Phys. Soc. Edin. 25, 3234.
Mitchell, P. 1972 Self-Electrophoretic locomotion in microorganisms – bacterial flagella as giant ionophores. FEBS Lett. 28 (1), 14.
Moran, J. L., Wheat, P. M. & Posner, J. D. 2010 Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Physical Rev. E 81 (6), 065302.
Moya, A. A., Castilla, J. & Horno, J. 1995 Ionic transport in electrochemical cells including electrical Double-Layer effects. A network thermodynamics approach. J. Phys. Chem. 99 (4), 12921298.
Murphy, W. D., Manzanares, J. A., Mafe, S. & Reiss, H. 1992 A numerical study of the equilibrium and nonequilibrium diffuse double layer in electrochemical cells. J. Phys. Chem. 96 (24), 99839991.
Navaneetham, G. & Posner, J. D. 2009 Electrokinetic instabilities of non-dilute colloidal suspensions. J. Fluid Mech. 619, 331365.
Nuccitelli, R. & Jaffe, L. 1976 Ionic components of current pulses generated by developing fucoid eggs. Develop. Biol. 49 (2), 518531.
Paxton, W. F., Baker, P. T., Kline, T. R., Wang, Y., Mallouk, T. E. & Sen, A. 2006 Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128 (46), 1488114888.
Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., Angelo, S. K. S., Cao, Y. Y., Mallouk, T. E., Lammert, P. E. & Crespi, V. H. 2004 Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 126 (41), 1342413431.
Paxton, W. F., Sen, A. & Mallouk, T. E. 2005 Motility of catalytic nanoparticles through self-generated forces. Chem. - A Eur. J. 11 (22), 64626470.
Pitta, T. & Berg, H. 1995 Self-electrophoresis is not the mechanism for motility in swimming cyanobacteria. J. Bacteriol. 177 (19), 57015703.
Posner, J. D. & Santiago, J. G. 2006 Convective instability of electrokinetic flows in a cross-shaped microchannel. J. Fluid Mech. 555, 142.
Prieve, D., Anderson, J., Ebel, J. & Lowell, M. 1984 Motion of a particle generated by chemical gradients. Part 2. electrolytes. J. Fluid Mech. 148, 247269.
Prieve, D., Gerhart, H. & Smith, R. 1978 Chemiphoresis – method for deposition of polymer coatings without applied electric current. Ind. Engng Chem. Product Res. Develop. 17 (1), 3236.
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.
Rica, R. A. & Bazant, M. Z. 2010 Electrodiffusiophoresis: Particle motion in electrolytes under direct current. Phys. Fluids 22 (11), 112109.
Rose, K. A., Meier, J. A., Dougherty, G. M. & Santiago, J. G. 2007 Rotational electrophoresis of striped metallic microrods. Phys. Rev. E 75 (1), 011503.
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2006 a Hydrodynamic interactions in the Induced-Charge electrophoresis of colloidal rod dispersions. J. Fluid Mech. 563 (1), 223259.
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 b Stabilization of a suspension of sedimenting rods by induced-charge electrophoresis. Phys. Fluids 18 (12), 121701.
Schenk, O. & Gärtner, K. 2004 Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Comput. Syst. 20 (3), 475487.
Schenk, O. & Gärtner, K. 2006 On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158179.
Shaw, D. 1970 Introduction to Colloid and Surface Chemistry, 2nd edn. Butterworth-Heinemann.
van Soestbergen, M., Biesheuvel, P. M. & Bazant, M. Z. 2010 Diffuse-charge effects on the transient response of electrochemical cells. Phys. Rev. E 81 (2, Part 1), 021503.
Spek, J. 1930 Zustandsnderungen der plasmakolloide bei befruchtung und entwicklung des Nereis-Eies. Protoplasma 9 (1), 370427.
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.
Squires, T. M. & Bazant, M. Z. 2006 Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 560, 65101.
Sundararajan, S., Lammert, P. E., Zudans, A. W., Crespi, V. H. & Sen, A. 2008 Catalytic motors for transport of colloidal cargo. Nano Lett. 8 (5), 12711276.
Wang, Y., Hernandez, R. M., Bartlett, J., Bingham, J. M., Kline, T. R., Sen, A. & Mallouk, T. E. 2006 Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22 (25), 1045110456.
Waterbury, J., Willey, J., Franks, D., Valois, F. & Watson, S. 1985 A cyanobacterium capable of swimming motility. Science 230 (4721), 7476.
Went, F. W. 1932 Jahrb. Wiss. Botanik 76 (4), 528557.
Yates, G. 1986 How microorganisms move through water. Am. Sci. 74 (4), 358365.
Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K. & Crittenden, J. C. 2008 Stability of commercial metal oxide nanoparticles in water. Water Res. 42 (8–9), 22042212.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed