Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T22:38:24.544Z Has data issue: false hasContentIssue false

Energy stability of magnetohydrodynamic flow in channels and ducts

Published online by Cambridge University Press:  22 May 2024

Thomas Boeck*
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, P. O. Box 100565, 98684 Ilmenau, Germany
Mattias Brynjell-Rahkola
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, P. O. Box 100565, 98684 Ilmenau, Germany
Yohann Duguet
Affiliation:
LISN-CNRS, Université Paris Saclay, F-91400 Orsay, France
*
Email address for correspondence: thomas.boeck@tu-ilmenau.de

Abstract

We study the energy stability of pressure-driven laminar magnetohydrodynamic flow in a rectangular duct with a transverse homogeneous magnetic field and electrically insulating walls. For sufficiently strong fields, the laminar velocity distribution has a uniform core and convex Hartmann and Shercliff boundary layers on the walls perpendicular and parallel to the magnetic field. The problem is discretized by a double expansion in Chebyshev polynomials in the cross-stream coordinates. The linear eigenvalue problem for the critical Reynolds number depends on the streamwise wavenumber, Hartmann number and the aspect ratio. We consider the limits of small and large aspect ratios in order to compare with stability models based on one-dimensional base flows. For large aspect ratios, we find good numerical agreement with results based on the quasi-two-dimensional approximation. The lift-up mechanism dominates in the limit of a zero streamwise wavenumber and provides a linear dependence between the critical Reynolds and Hartmann numbers in the duct. As the aspect ratio is reduced away from unity, the duct results converge to Orr's original energy stability result for spanwise uniform perturbations imposed on the plane Poiseuille base flow. We also examine different possible symmetries of eigenmodes as well as the purely hydrodynamic case in the duct geometry.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK.

References

Bhattacharya, S., Boeck, T., Krasnov, D. & Schumacher, J. 2024 Wall-attached convection under strong inclined magnetic fields. J. Fluid Mech. 979, A53.CrossRefGoogle Scholar
Biau, D., Soueid, H. & Bottaro, A. 2008 Transition to turbulence in duct flow. J. Fluid Mech. 596, 133142.CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.CrossRefGoogle Scholar
Branover, H. 1978 Magnetohydrodynamic Flow in Ducts. Halsted.Google Scholar
Brynjell-Rahkola, M., Duguet, Y. & Boeck, T. 2022 Edge states in MHD duct flows with electrically insulating walls. Bull. Am. Phys. Soc. 75th Annual Meeting of the Division of Fluid Dynamics 67 (19).Google Scholar
Busse, F.H. 1969 Bounds on the transport of mass and momentum by turbulent flow between parallel plates. Z. Angew. Math. Phys. 20, 114.CrossRefGoogle Scholar
Busse, F.H. 1972 A property of the energy stability limit for plane parallel shear flow. Arch. Rat. Mech. Anal. 47 (1), 2835.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A: Fluid Dyn. 4 (8), 16371650.CrossRefGoogle Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 2007 Spectral Methods: Fundamentals in Single Domains. Springer Science & Business Media.CrossRefGoogle Scholar
Cassells, O.G.W., Vo, T., Pothérat, A. & Sheard, G.J. 2019 From three-dimensional to quasi-two-dimensional: transient growth in magnetohydrodynamic duct flows. J. Fluid Mech. 861, 382406.CrossRefGoogle Scholar
Doering, C.R. & Gibbon, J.D. 1995 Applied Analysis of the Navier–Stokes Equations. Cambridge University Press.CrossRefGoogle Scholar
Falsaperla, P., Giacobbe, A. & Mulone, G. 2019 Nonlinear stability results for plane Couette and Poiseuille flows. Phys. Rev. E 100 (1), 013113.CrossRefGoogle ScholarPubMed
Farrell, B.F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31 (8), 20932102.CrossRefGoogle Scholar
Hartmann, J. & Lazarus, F. 1937 Hg-dynamics II experimental investigations on the flow of mercury in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15 (7), 145.Google Scholar
Joseph, D.D. 1971 On the place of energy methods in a global theory of hydrodynamic stability. In Instability of Continuous Systems: Symposium Herrenalb (Germany) September 8–12, 1969 (ed. H. Leipholz), pp. 132–142. Springer.CrossRefGoogle Scholar
Joseph, D.D. & Carmi, S. 1969 Stability of Poiseuille flow in pipes, annuli, and channels. Q. Appl. Maths 26 (4), 575599.CrossRefGoogle Scholar
Kashyap, P.V., Duguet, Y. & Dauchot, O. 2022 Linear instability of turbulent channel flow. Phys. Rev. Lett. 129 (24), 244501.CrossRefGoogle ScholarPubMed
Kerswell, R.R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50, 319345.CrossRefGoogle Scholar
Knaepen, B. & Moreau, R. 2008 Magnetohydrodynamic turbulence at low magnetic Reynolds number. Annu. Rev. Fluid Mech. 40, 2545.CrossRefGoogle Scholar
Kobayashi, H. 2008 Large eddy simulation of magnetohydrodynamic turbulent duct flows. Phys. Fluids 20 (1), 015102.CrossRefGoogle Scholar
Krasnov, D., Rossi, M., Zikanov, O. & Boeck, T. 2008 Optimal growth and transition to turbulence in channel flow with spanwise magnetic field. J. Fluid Mech. 596, 73101.CrossRefGoogle Scholar
Krasnov, D., Thess, A., Boeck, T., Zhao, Y. & Zikanov, O. 2013 Patterned turbulence in liquid metal flow: computational reconstruction of the Hartmann experiment. Phys. Rev. Lett. 110 (8), 084501.CrossRefGoogle ScholarPubMed
Krasnov, D., Zikanov, O. & Boeck, T. 2012 Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421446.CrossRefGoogle Scholar
Krasnov, D., Zikanov, O. & Boeck, T. 2015 Patterned turbulence as a feature of transitional regimes of magnetohydrodynamic duct flows. Magnetohydrodynamics 51 (2), 237247.CrossRefGoogle Scholar
Krasnov, D., Zikanov, O., Rossi, M. & Boeck, T. 2010 Optimal linear growth in magnetohydrodynamic duct flow. J. Fluid Mech. 653, 273299.CrossRefGoogle Scholar
Lemoult, G., Shi, L., Avila, K., Jalikop, S.V., Avila, M. & Hof, B. 2016 Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12 (3), 254258.CrossRefGoogle Scholar
Leriche, E. & Labrosse, G. 2004 Stokes eigenmodes in square domain and the stream function–vorticity correlation. J. Comput. Phys. 200 (2), 489511.CrossRefGoogle Scholar
Lingwood, R.J. & Alboussière, T. 1999 On the stability of the Hartmann layer. Phys. Fluids 11 (8), 20582068.CrossRefGoogle Scholar
Moreau, R.J. 1990 Magnetohydrodynamics. Fluid Mechanics and its Applications, vol. 3. Springer Science & Business Media.CrossRefGoogle Scholar
Moresco, P. & Alboussière, T. 2004 Experimental study of the instability of the Hartmann layer. J. Fluid Mech. 504, 167181.CrossRefGoogle Scholar
Müller, U. & Bühler, L. 2001 Magnetofluiddynamics in Channels and Containers. Springer Science & Business Media.CrossRefGoogle Scholar
Murgatroyd, W. 1953 CXLII. Experiments on magneto-hydrodynamic channel flow. Lond. Edin. Dub. Phil. Mag. J. Sci. 44 (359), 13481354.CrossRefGoogle Scholar
Nagy, P.T. 2022 Enstrophy change of the Reynolds–Orr solution in channel flow. Phys. Rev. E 105 (3), 035108.CrossRefGoogle ScholarPubMed
Orr, W.M'F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. Proc. R. Irish Acad. 27, 69138.Google Scholar
Pothérat, A. 2007 Quasi-two-dimensional perturbations in duct flows under transverse magnetic field. Phys. Fluids 19 (7), 074104.CrossRefGoogle Scholar
Pothérat, A., Sommeria, J. & Moreau, R. 2000 An effective two-dimensional model for MHD flows with transverse magnetic field. J. Fluid Mech. 424, 75100.CrossRefGoogle Scholar
Priede, J., Aleksandrova, S. & Molokov, S. 2010 Linear stability of Hunt's flow. J. Fluid Mech. 649, 115134.CrossRefGoogle Scholar
Reddy, S.C. & Henningson, D.S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Applied Mathematical Sciences, vol. 142. Springer.CrossRefGoogle Scholar
Shercliff, J.A. 1953 Steady motion of conducting fluids in pipes under transverse magnetic fields. Math. Proc. Camb. Phil. Soc. 49 (1), 136144.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Tagawa, T. 2019 Linear stability analysis of liquid metal flow in an insulating rectangular duct under external uniform magnetic field. Fluids 4 (4), 177.CrossRefGoogle Scholar
Tatsumi, T. & Yoshimura, T. 1990 Stability of the laminar flow in a rectangular duct. J. Fluid Mech. 212, 437449.CrossRefGoogle Scholar
The MathWorks, Inc. 2020 Matlab release 2020b. Natick, MA, USA.Google Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Uhlmann, M., Kawahara, G. & Pinelli, A. 2010 Traveling-waves consistent with turbulence-driven secondary flow in a square duct. Phys. Fluids 22 (8), 084102.CrossRefGoogle Scholar
Wedin, H., Bottaro, A. & Nagata, M. 2009 Three-dimensional traveling waves in a square duct. Phys. Rev. E 79 (6), 065305.CrossRefGoogle Scholar
Xiong, X. & Chen, Z.-M. 2019 A conjecture on the least stable mode for the energy stability of plane parallel flows. J. Fluid Mech. 881, 794814.CrossRefGoogle Scholar
Zikanov, O., Krasnov, D., Li, Y., Boeck, T. & Thess, A. 2014 Patterned turbulence in spatially evolving magnetohydrodynamic duct and pipe flows. Theor. Comput. Fluid Dyn. 28, 319334.CrossRefGoogle Scholar