Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-03T12:36:19.670Z Has data issue: false hasContentIssue false

H2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system

Published online by Cambridge University Press:  20 June 2011

KEVIN K. CHEN*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
CLARENCE W. ROWLEY
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: kkchen@princeton.edu

Abstract

The linearised complex Ginzburg–Landau equation is a model for the evolution of small fluid perturbations, such as in a bluff body wake. By implementing actuators and sensors and designing an H2 optimal controller, we control a supercritical, infinite-domain formulation of this system. We seek the optimal actuator and sensor placement that minimises the H2 norm of the controlled system, from flow disturbances and sensor noise to a cost on the perturbation and input magnitudes. We formulate the gradient of the H2 squared norm with respect to the actuator and sensor placements and iterate towards the optimal placement. When stochastic flow disturbances are present everywhere in the spatial domain, it is optimal to place the actuator just upstream of the origin and the sensor just downstream. With pairs of actuators and sensors, it is optimal to place each actuator slightly upstream of each corresponding sensor, and scatter the pairs throughout the spatial domain. When disturbances are only introduced upstream, the optimal placement shifts upstream as well. Global mode and Gramian analyses fail to predict the optimal placement; they produce H2 norms about five times higher than at the true optimum. The wavemaker region is a better guess for the optimal placement.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Åkervik, E., Hœpffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. J. Fluid Mech. 579, 305314.CrossRefGoogle Scholar
Bagheri, S., Henningson, D. S., Hœpffner, J. & Schmid, P. J. 2009 Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62 (2), 020803.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Chomaz, J.-M., Huerre, P. & Redekopp, L. G. 1988 Bifurcations to local and global modes in spatially developing flows. Phys. Rev. Lett. 60 (1), 2528.CrossRefGoogle ScholarPubMed
Cossu, C. & Chomaz, J.-M. 1997 Global measures of local convective instabilities. Phys. Rev. Lett. 78 (23), 43874390.CrossRefGoogle Scholar
Doyle, J. C., Glover, K., Khargonekar, P. P. & Francis, B. A. 1989 State-space solutions to standard H 2 and H control problems. IEEE Trans. Autom. Control 34 (8), 831847.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Gillies, E. A. 2001 Multiple sensor control of vortex shedding. AIAA J. 39 (4), 748750.CrossRefGoogle Scholar
Halim, D. & Moheimani, S. O. R. 2003 An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate. Mechatronics 13 (1), 2747.CrossRefGoogle Scholar
Hiramoto, K., Doki, H. & Obinata, G. 2000 Optimal sensor/actuator placement for active vibration control using explicit solution of algebraic Riccati equation. J. Sound Vib. 229 (5), 10571075.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.CrossRefGoogle Scholar
Kondoh, S., Yatomi, C. & Inoue, K. 1990 The positioning of sensors and actuators in the vibration control of flexible systems. JSME Intl J. Ser. III 33 (2), 145152.Google Scholar
Lauga, E. & Bewley, T. R. 2003 The decay of stabilizability with Reynolds number in a linear model of spatially developing flows. Proc. R. Soc. A 459 (2036), 20772095.CrossRefGoogle Scholar
Lauga, E. & Bewley, T. R. 2004 Performance of a linear robust control strategy on a nonlinear model of spatially developing flows. J. Fluid Mech. 512, 343374.CrossRefGoogle Scholar
Luchini, P. & Bewley, T. R. 2010 Methods for the solution of very large flow-control problems that bypass open-loop model reduction. In Sixty-third Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, Long Beach, CA, USA.Google Scholar
Ma, Z., Ahuja, S. & Rowley, C. W. 2011 Reduced-order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn. 25 (1–4), 233247.CrossRefGoogle Scholar
Moheimani, S. O. R. & Ryall, T. 1999 Considerations on placement of piezoceramic actuators that are used in structural vibration control. In Proc. 38th Conference on Decision & Control, pp. 11181123. IEEE.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes, 3rd edn. Cambridge University Press.Google Scholar
Roussopoulos, K. 1993 Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267296.CrossRefGoogle Scholar
Roussopoulos, K. & Monkewitz, P. A. 1996 Nonlinear modelling of vortex shedding control in cylinder wakes. Physica D 97 (1–3), 264273.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2000 Stability and Transition in Shear Flows. Springer.Google Scholar
Skogestad, S. & Postlethwaite, I. 2005 Multivariable Feedback Control: Analysis and Design, 2nd edn. John Wiley & Sons Ltd.Google Scholar
Sreenivasan, K. R., Strykowski, P. J. & Olinger, D. J. 1987 Hopf bifurcation, Landau equation, and vortex shedding behind circular cylinders. In Proc. Forum on Unsteady Flow Separation (ed. Ghia, K. N.), pp. 113. ASME.Google Scholar
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low reynolds numbers. J. Fluid Mech. 218, 71107.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar