Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-31T22:40:29.781Z Has data issue: false hasContentIssue false

Hydrochemical interactions of phoretic particles: a regularized multipole framework

Published online by Cambridge University Press:  26 May 2021

Francisco Rojas-Pérez
Affiliation:
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120Palaiseau, France Escuela de Física, Instituto Tecnológico de Costa Rica, Cartago, 159-7050, Costa Rica
Blaise Delmotte
Affiliation:
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120Palaiseau, France
Sébastien Michelin*
Affiliation:
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120Palaiseau, France
*
Email address for correspondence: sebastien.michelin@ladhyx.polytechnique.fr

Abstract

Chemically active colloids modify the concentration of chemical solutes surrounding them in order to self-propel. In doing so, they generate long-ranged hydrodynamic flows and chemical gradients that modify the trajectories of other particles. As a result, the dynamics of reactive suspensions is fundamentally governed by hydro-chemical interactions. A full solution of the detailed hydro-chemical problem with many particles is challenging and computationally expensive. Most current methods rely on the Green's functions of the Laplace and Stokes operators to approximate the particle signatures in the far field, an approach which is only valid in the very dilute limit in simple geometries. To overcome these limitations, we propose a regularized multipole framework, directly inspired by the force coupling method (FCM), to model phoretic suspensions. Our approach, called diffusio-phoretic FCM (DFCM), relies on grid-based volume averages of the concentration field to compute the particle surface concentration moments. These moments define the chemical multipoles of the diffusion (Laplace) problem and provide the swimming forcing of the Stokes equations. Unlike far-field models based on singularity superposition, DFCM accounts for mutually induced dipoles. The accuracy of the method is evaluated against exact and accurate numerical solutions for a few canonical cases. We also quantify its improvements over far-field approximations for a wide range of inter-particle distances. The resulting framework can readily be implemented into efficient solvers, allowing for large scale simulations of semi-dilute diffusio-phoretic suspensions.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alarcón, F. & Pagonabarraga, I. 2013 Spontaneous aggregation and global polar ordering in squirmer suspensions. J. Mol. Liq. 185, 5661.CrossRefGoogle Scholar
Anderson, J.L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.CrossRefGoogle Scholar
Babataheri, A., Roper, M., Fermigier, M. & du Roure, O. 2011 Tethered flexibmags as artificial cilia. J. Fluid Mech. 678, 513.CrossRefGoogle Scholar
Batchelor, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G. 2016 Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006.CrossRefGoogle Scholar
Bhalla, A.P.S., Griffith, B.E., Patankar, N.A. & Donev, A. 2013 A minimally-resolved immersed boundary model for reaction-diffusion problems. J. Chem. Phys. 139 (21), 214112.CrossRefGoogle ScholarPubMed
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Brady, J.F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.CrossRefGoogle Scholar
Bregulla, A.P. & Cichos, F. 2015 Size dependent efficiency of photophoretic swimmers. Faraday Discuss. 184, 381391.CrossRefGoogle ScholarPubMed
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
Brown, A. & Poon, W. 2014 Ionic effects in self-propelled pt-coated janus swimmers. Soft Matt. 10, 40164027.CrossRefGoogle ScholarPubMed
Buttinoni, I., Volpe, G., Kümmel, F., Volpe, G. & Bechinger, C. 2012 Active Brownian motion tunable by light. J. Phys.: Condens. Matter 24, 284129.Google Scholar
Cates, M.E. & Tailleur, J. 2015 Motility-induced phase separation. Annu. Rev. Conden. Ma. P. 6, 219244.CrossRefGoogle Scholar
Colberg, P.H. & Kapral, R. 2017 Many-body dynamics of chemically propelled nanomotors. J. Chem. Phys. 147 (6), 064910.CrossRefGoogle ScholarPubMed
Córdova-Figueroa, U.M. & Brady, J.F. 2008 Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100, 158303.CrossRefGoogle ScholarPubMed
Dance, S.L. & Maxey, M.R. 2003 Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comput. Phys. 189 (1), 212238.CrossRefGoogle Scholar
Delmotte, B., Keaveny, E.E., Plouraboué, F. & Climent, E. 2015 Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method. J. Comput. Phys. 302, 524547.CrossRefGoogle Scholar
Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A. & Bibette, J. 2005 Microscopic artificial swimmers. Nature 473, 862865.CrossRefGoogle Scholar
Duan, W., Wang, W., Das, S., Yadav, V., Mallouk, T.E. & Sen, A. 2015 Synthetic nano- and micro-machines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8, 311333.CrossRefGoogle Scholar
Ebbens, S.J. & Howse, J.R. 2010 In pursuit of propulsion at the nanoscale. Soft Matt. 6, 726738.CrossRefGoogle Scholar
Elgeti, J., Winkler, R.G. & Gompper, G. 2015 Physics of microswimmers–single particle motion and collective behavior: a review. Rep. Prog. Phys. 78 (5), 056601.CrossRefGoogle ScholarPubMed
Fauci, L. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371394.CrossRefGoogle Scholar
Fiore, A.M. & Swan, J.W. 2019 Fast Stokesian dynamics. J. Fluid Mech. 878, 544597.CrossRefGoogle Scholar
Ginot, F., Theurkauff, I., Detcheverry, F., Ybert, C. & Cottin-Bizonne, C. 2018 Aggregation-fragmentation and individual dynamics of active clusters. Nat. Commun. 9, 696.CrossRefGoogle ScholarPubMed
Golestanian, R., Liverpool, T.B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9 (5), 126126.CrossRefGoogle Scholar
Guasto, J.S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.CrossRefGoogle Scholar
Howse, J.R., Jones, R.A.L., Ryan, A.J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102.CrossRefGoogle ScholarPubMed
Hu, W.-F., Lin, T.-S., Rafai, S. & Misbah, C. 2019 Chaotic swimming of phoretic particles. Phys. Rev. Lett. 123 (23), 238004.CrossRefGoogle ScholarPubMed
Ibrahim, Y., Golestanian, R. & Liverpool, T.B. 2017 Multiple phoretic mechanisms in the self-propulsion of a pt-insulator janus swimmer. J. Fluid Mech. 828, 318352.CrossRefGoogle Scholar
Ibrahim, Y. & Liverpool, T.B. 2016 How walls affect the dynamics of self-phoretic microswimmers. Eur. Phys. J. 225, 18431874.Google Scholar
Ishikawa, T., Simmonds, M.P. & Pedley, T.J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Izri, Z., van der Linden, M.N., Michelin, S. & Dauchot, O. 2014 Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion. Phys. Rev. Lett. 113, 248302.CrossRefGoogle ScholarPubMed
Kagan, D., Laocharoensuk, R., Zimmerman, M., Clawson, C., Balasubramanian, S., Kang, D., Bishop, D., Sattayasamitsathit, S., Zhang, L. & Wang, J. 2010 Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6 (23), 27412747.CrossRefGoogle ScholarPubMed
Kanso, E. & Michelin, S. 2019 Phoretic and hydrodynamic interactions of weakly confined autophoretic particles. J. Chem. Phys. 150, 044902.CrossRefGoogle ScholarPubMed
Keaveny, E.E. & Maxey, M.R. 2008 Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids. J. Comput. Phys. 227, 95549571.CrossRefGoogle Scholar
Kümmel, F., ten Hagen, B., Wittkowski, R., Buttinoni, I., Eichhorn, R., Volpe, G., Löwen, H. & Bechinger, C. 2013 Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 110, 198302.CrossRefGoogle ScholarPubMed
Ladd, A.J.C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104 (5), 11911251.CrossRefGoogle Scholar
Lambert, R.A., Picano, F., Breugem, W.P. & Brandt, L. 2013 Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528557.CrossRefGoogle Scholar
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105130.CrossRefGoogle Scholar
Lauga, E. & Michelin, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117, 148001.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Li, J., Shklyaev, O.E., Li, T., Liu, W., Shum, H., Rozen, I., Balazs, A.C. & Wang, J. 2015 Self-propelled nanomotors autonomously seek and repair cracks. Nano Lett. 15 (10), 70777085.CrossRefGoogle ScholarPubMed
Liang, Z., Gimbutas, Z., Greengard, L., Huang, J. & Jiang, S. 2013 A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications. J. Comput. Phys. 234, 133139.CrossRefGoogle Scholar
Liebchen, B. & Löwen, H. 2019 Which interactions dominate in active colloids? J. Chem. Phys. 150, 061102.CrossRefGoogle ScholarPubMed
Liebchen, B., Marenduzzo, D., Pagonabarraga, I. & Cates, M.E. 2015 Clustering and pattern formation in chemicorepulsive active colloids. Phys. Rev. Lett. 115, 258301.CrossRefGoogle ScholarPubMed
Liu, D., Keaveny, E.E., Maxey, M.R. & Karniadakis, G.E. 2009 Force-coupling method for flows with ellipsoidal particles. J. Comput. Phys. 228 (10), 35593581.CrossRefGoogle Scholar
Lomholt, S. & Maxey, M.R. 2003 Force-coupling method for particulate two-phase flow: Stokes flow. J. Comput. Phys. 184 (2), 381405.CrossRefGoogle Scholar
Lushi, E. & Peskin, C.S. 2013 Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers. Comput. Struct. 122, 239248.CrossRefGoogle Scholar
Maass, C.C., Krüger, C., Herminghaus, S. & Bahr, C. 2016 Swimming droplets. Annu. Rev. Conden. Ma. P. 7, 171193.CrossRefGoogle Scholar
Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M. & Simha, R.A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 11431189.CrossRefGoogle Scholar
Maxey, M. & Patel, B.K. 2001 Localized force representations for particles sedimenting in stokes flow. Intl J. Multiphase Flow 27, 16031626.CrossRefGoogle Scholar
Michelin, S., Guérin, E. & Lauga, E. 2019 Collective dissolution of microbubbles. Phys. Rev. Fluids 3, 043601.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2015 Autophoretic locomotion from geometric asymmetry. Eur. Phys. J. E 38, 7.CrossRefGoogle ScholarPubMed
Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25 (6), 061701.CrossRefGoogle Scholar
Montenegro-Johnson, T.D., Michelin, S. & Lauga, E. 2015 A regularised singularity approach to phoretic problems. Eur. Phys. J. E 38 (12), 139.CrossRefGoogle ScholarPubMed
Moran, J.L. & Posner, J.D. 2011 Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J. Fluid Mech. 680, 3166.CrossRefGoogle Scholar
Moran, J.L. & Posner, J.D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49, 511540.CrossRefGoogle Scholar
Nasouri, B. & Golestanian, R. 2020 a Exact axisymmetric interaction of phoretically active janus particles. J. Fluid Mech. 905, A13.CrossRefGoogle Scholar
Nasouri, B. & Golestanian, R. 2020 b Exact phoretic interaction of two chemically active particles. Phys. Rev. Lett. 124, 168003.CrossRefGoogle ScholarPubMed
Pak, O.S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88, 128.CrossRefGoogle Scholar
Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., Angelo, S.K.S., Cao, Y., Mallouk, T.E., Lammert, P.E. & Crespi, V.H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126 (41), 13424–1343.CrossRefGoogle ScholarPubMed
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamics phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E. & Duguet, E. 2005 Design and synthesis of janus micro- and nanoparticles. J. Mater. Chem. 15, 37453760.CrossRefGoogle Scholar
Popescu, M.N., Uspal, W.E. & Dietrich, S. 2016 Self-diffusiophoresis of chemically active colloids. Eur. Phys. J. 225, 21892206.Google Scholar
Reigh, S.Y. & Kapral, R. 2015 Catalytic dimer nanomotors: continuum theory and microscopic dynamics. Soft Matt. 11, 31493158.CrossRefGoogle ScholarPubMed
Saffman, P.G. 1973 On the settling speed of free and fixed suspensions. Stud. Appl. Maths 52 (2), 115127.CrossRefGoogle Scholar
Saha, S., Golestanian, R. & Ramaswamy, S. 2014 Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E 89, 062316.CrossRefGoogle ScholarPubMed
Saintillan, D. 2018 Rheology of active fluids. Annu. Rev. Fluid Mech. 50, 563592.CrossRefGoogle Scholar
Saintillan, D. & Shelley, M.J. 2013 Active suspensions and their nonlinear models. C. R. Phys. 14 (6), 497517.CrossRefGoogle Scholar
Schmidt, F., Liebchen, B., Löwen, H. & Volpe, G. 2019 Light-controlled assembly of active colloidal molecules. J. Chem. Phys. 150 (9), 094905.CrossRefGoogle ScholarPubMed
Shao, J., Abdelghani, M., Shen, G., Cao, S., Williams, D.S. & van Hest, J.C.M. 2018 Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano 12 (5), 48774885.CrossRefGoogle ScholarPubMed
Sharifi-Mood, N., Mozzafari, A. & Córdova-Figueroa, U.M. 2016 Pair interaction of catalytically active colloids: from assembly to escape. J. Fluid Mech. 798, 910954.CrossRefGoogle Scholar
Shklyaev, S., Brady, J.F. & Córdova-Figueroa, U.M. 2014 Non-spherical osmotic motor: chemical sailing. J. Fluid Mech. 748, 488520.CrossRefGoogle Scholar
Sierou, A. & Brady, J.F. 2001 Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115146.CrossRefGoogle Scholar
Singh, R. & Adhikari, R. 2019 Pystokes: Phoresis and Stokesian hydrodynamics in python. arXiv:1910.00909.CrossRefGoogle Scholar
Singh, R., Adhikari, R. & Cates, M.E. 2019 Competing chemical and hydrodynamic interactions in autophoretic colloidal suspensions. J. Chem. Phys. 151 (4), 044901.CrossRefGoogle ScholarPubMed
Soto, R. & Golestanian, R. 2014 Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112, 068301.CrossRefGoogle ScholarPubMed
Soto, R. & Golestanian, R. 2015 Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E 91, 052304.CrossRefGoogle ScholarPubMed
Stone, H.A. & Samuel, A.D.T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77, 4102.CrossRefGoogle ScholarPubMed
Sundararajan, S., Lammert, P.E., Zudans, A.W., Crespi, V.H. & Sen, A. 2008 Catalytic motors for transport of colloidal cargo. Nano Lett. 8 (5), 12711276.CrossRefGoogle ScholarPubMed
Swan, J.W., Brady, J.F. & Moore, R.S. 2011 Modeling hydrodynamic self-propulsion with Stokesian dynamics. Or teaching Stokesian dynamics to swim. Phys. Fluids 23 (7), 071901.CrossRefGoogle Scholar
Tatulea-Codrean, M. & Lauga, E. 2018 Artificial chemotaxis of phoretic swimmers: instantaneous and long-time behaviour. J. Fluid Mech. 856, 921957.CrossRefGoogle Scholar
Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. 2012 Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108, 268303.CrossRefGoogle ScholarPubMed
Thutupalli, S., Geyer, D., Singh, R., Adhikari, R. & Stone, H.A. 2018 Flow-induced phase separation of active particles is controlled by boundary conditions. Proc. Natl Acad. Sci. USA 115, 54035408.CrossRefGoogle ScholarPubMed
Traverso, T. & Michelin, S. 2020 Hydrochemical interactions in dilute phoretic suspensions: from individual particle properties to collective organization. Phys. Rev. Fluids 5, 104203.CrossRefGoogle Scholar
Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2015 Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matt. 11, 434438.CrossRefGoogle Scholar
Varma, A. & Michelin, S. 2019 Modeling chemo-hydrodynamic interactions of phoretic particles: a unified framework. Phys. Rev. Fluids 4, 124204.CrossRefGoogle Scholar
Varma, A., Montenegro-Johnson, T.D. & Michelin, S. 2018 Clustering-induced self-propulsion of isotropic autophoretic particles. Soft Matt. 14, 71557173.CrossRefGoogle ScholarPubMed
Wang, Y., Hernandez, R.M. Jr., Bartlett, D.J., Bingham, J.M., Kline, T.R., Sen, A. & Mallouk, T.E. 2006 Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogene peroxide solutions. Langmuir 22, 1045110456.CrossRefGoogle Scholar
Xu, J., Maxey, M.R. & Karniadakis, G.E.M. 2002 Numerical simulation of turbulent drag reduction using micro-bubbles. J. Fluid Mech. 468, 271281.CrossRefGoogle Scholar
Yadav, V., Duan, W., Butler, P.J. & Sen, A. 2015 Anatomy of nanoscale propulsion. Annu. Rev. Biophys. 44, 77100.CrossRefGoogle ScholarPubMed
Yan, W. & Blackwell, R. 2020 Kernel aggregated fast multipole method: efficient summation of Laplace and Stokes kernel functions. arXiv:2010.15155.Google Scholar
Yan, W. & Brady, J.F. 2016 The behavior of active diffusiophoretic suspensions: an accelerated Laplacian dynamics study. J. Chem. Phys. 145 (13), 134902.CrossRefGoogle ScholarPubMed
Yang, M., Wysocki, A. & Ripoll, M. 2014 Hydrodynamic simulations of self-phoretic microswimmers. Soft Matt. 10, 62086218.CrossRefGoogle ScholarPubMed
Yariv, E. 2011 Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proc. R. Soc. Lond. A 467, 16451664.Google Scholar
Yeo, K. & Maxey, M.R. 2010 Simulations of concentrated suspensions using the force-coupling method. J. Comput. Phys. 229, 24012421.CrossRefGoogle Scholar
Yi, Y., Sanchez, L., Gao, Y. & Yu, Y. 2016 Janus particles for biological imaging and sensing. Analyst 141 (12), 35263539.CrossRefGoogle Scholar
Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D. & Nelson, B.J. 2009 Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107.CrossRefGoogle Scholar
Zöttl, A. & Stark, H. 2014 Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112, 118101.CrossRefGoogle ScholarPubMed
Zöttl, A. & Stark, H. 2016 Emergent behavior in active colloids. J. Phys.: Condens. Matter 28 (25), 253001.Google Scholar
Zöttl, A. & Stark, H. 2018 Simulating squirmers with multiparticle collision dynamics. Eur. Phys. J. E 41 (5), 61.CrossRefGoogle ScholarPubMed