Skip to main content
    • Aa
    • Aa

Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

  • W. Cheng (a1), D. I. Pullin (a1) and R. Samtaney (a2)

We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number $Re_{{\it\theta}}$ based on the momentum boundary-layer thickness  ${\it\theta}$ . Comparison with data from the first case at $Re_{{\it\theta}}=2000$ demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, $Re_{{\it\theta}}$ , the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger $Re_{{\it\theta}}=11\,000$ of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. T. Bose  & P. Moin 2014 A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26, 015104.

K. A. Chauhan , P. A. Monkewitz  & H. M. Nagib 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41 (2), 021404.

W. Cheng  & R. Samtaney 2014 Power-law versus log-law in wall-bounded turbulence: a large-eddy simulation perspective. Phys. Fluids 26, 011703.

G. Constantinescu  & K. D. Squires 2004 Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Phys. Fluids 16, 14491466.

M. Inoue , R. Mathis , I. Marusic  & D. I. Pullin 2012 Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids 24 (7), 075102.

M. Inoue , D. I. Pullin , Z. Harun  & I. Marusic 2013 LES of the adverse-pressure gradient turbulent boundary layer. Intl J. Heat Fluid Flow 44, 293300.

O. Lögdberg , K. Angele  & P. Alfredsson 2008 On the scaling of turbulent separating boundary layers. Phys. Fluids 20, 075104.

T. S. Lund , X. Wu  & K. D. Squires 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233258.

T. S. Lundgren 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21932203.

A. Misra  & D. I. Pullin 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 24432454.

Y. Na  & P. Moin 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.

H. M. Nagib , K. A. Chauhan  & P. A. Monkewitz 2007 Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. Lond. A 365, 755770.

J. B. Perot 1993 An analysis of the fractional step method. J. Comput. Phys. 108, 5158.

A. E. Perry  & W. H. Schofield 1973 Mean velocity and shear stress distributions in turbulent boundary layers. Phys. Fluids 16 (12), 20682074.

U. Piomelli  & E. Balaras 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34 (1), 349374.

N. Saito  & D. I. Pullin 2014 Large eddy simulation of smooth–rough–smooth transitions in turbulent channel flows. Intl J. Heat Mass Transfer 78, 707720.

N. Saito , D. I. Pullin  & M. Inoue 2012 Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow. Phys. Fluids 24 (7), 075103.

R. L. Simpson 1983 A model for the backflow mean velocity profile. AIAA J. 21 (1), 142143.

R. L. Simpson 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21 (1), 205232.

P. R. Spalart 2009 Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181202.

P. R. Spalart , R. D. Moser  & M. M. Rogers 1991 Spectral methods for the Navier–Stokes equations with one finite and two periodic directions. J. Comput. Phys. 96, 297324.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 96 *
Loading metrics...

Abstract views

Total abstract views: 270 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.