Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T13:15:49.878Z Has data issue: false hasContentIssue false

Near-wall dynamics of a neutrally buoyant spherical particle in an axisymmetric stagnation point flow

Published online by Cambridge University Press:  06 April 2020

Qing Li
Affiliation:
Laboratoire de Génie Chimique, CNRS-Toulouse INP-UPS Université de Toulouse, 4 Allée Emile Monso, 31432Toulouse, France Institut de Mécanique des Fluides de Toulouse, CNRS-Toulouse INP-UPS Université de Toulouse, Allée Camille Soula, 31400Toulouse, France FR FERMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Micheline Abbas*
Affiliation:
Laboratoire de Génie Chimique, CNRS-Toulouse INP-UPS Université de Toulouse, 4 Allée Emile Monso, 31432Toulouse, France FR FERMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Jeffrey F. Morris
Affiliation:
Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, NY10031, USA
Eric Climent
Affiliation:
Institut de Mécanique des Fluides de Toulouse, CNRS-Toulouse INP-UPS Université de Toulouse, Allée Camille Soula, 31400Toulouse, France FR FERMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Jacques Magnaudet
Affiliation:
Institut de Mécanique des Fluides de Toulouse, CNRS-Toulouse INP-UPS Université de Toulouse, Allée Camille Soula, 31400Toulouse, France FR FERMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
*
Email address for correspondence: micheline.abbas@ensiacet.fr

Abstract

The motion of a neutrally buoyant spherical particle along the axis of an axisymmetric stagnation point flow at a rigid and smooth flat wall (Hiemenz–Homann flow) is investigated in the presence of low-to-moderate inertia effects. The particle dynamics is elucidated using numerical simulation. At distances large compared to the characteristic thickness of the boundary layer $\unicode[STIX]{x1D6FF}=(\unicode[STIX]{x1D708}/B)^{1/2}$, with $\unicode[STIX]{x1D708}$ the kinematic viscosity and $B$ the strain rate of the carrying flow, the particle decelerates as it approaches the wall, due to the ambient pressure increase toward the stagnation point. In this part of the path, its velocity is nearly identical to that of the local undisturbed fluid at the position of its centre. Relative motion between the particle and fluid increases as the wall–particle gap reduces, due to wall-induced hydrodynamic interaction forces. Two distinct evolutions of the net force on the particle are observed, depending on the relative particle size, $a/\unicode[STIX]{x1D6FF}\sim Re^{1/2}$, where $a$ is the particle radius and $Re=2Ba^{2}/\unicode[STIX]{x1D708}$ is the Reynolds number. For $a/\unicode[STIX]{x1D6FF}\lesssim 2$, the force decays monotonically to zero, while it undergoes a sharp rise before returning to zero for larger particles. In the latter case, the particle retains a sufficient velocity even for very small gap widths such that, under usual roughness levels, a rebounding collision would occur. The stress profiles at the particle surface are investigated to separate the various contributions to the hydrodynamic force. Theoretical predictions for near-wall viscous and inertial forces available in the creeping-flow and low-but-finite Reynolds-number limits, respectively, are used to pinpoint the origin of the dominant inertia effect that controls the particle dynamics when the particle gets very close to the wall.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auton, T. R., Hunt, J. C. R. & Prud’Homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.Google Scholar
Calmet, I. & Magnaudet, J. 1997 Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys. Fluids 9, 438455.CrossRefGoogle Scholar
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface. II. Small gap widths, including inertial effects. Chem. Engng Sci. 22, 17531777.CrossRefGoogle Scholar
Cumby, T. R. 1990 Slurry mixing with impellers. Part 1. Theory and previous research. J. Agric. Engng Res. 45, 157173.CrossRefGoogle Scholar
Davis, R. H., Serayssol, J. M. & Hinch, E. J. 1986 The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163, 479497.CrossRefGoogle Scholar
Goren, S. L. & O’Neill, M. E. 1971 On the hydrodynamic resistance to a particle of a dilute suspension when in the neighbourhood of a large obstacle. Chem. Engng Sci. 26, 325338.CrossRefGoogle Scholar
Gupta, K., Avvari, M., Mashamba, A. & Mallaiah, M. 2017 Ice jet machining: a sustainable variant of abrasive water jet machining. In Sustainable Machining, pp. 6778. Springer.CrossRefGoogle Scholar
Haddadi, H., Shojaei-Zadeh, S., Connington, K. & Morris, J. F. 2014 Suspension flow past a cylinder: particle interactions with recirculating wakes. J. Fluid Mech. 760, R2.CrossRefGoogle Scholar
Hamed, A., Tabakoff, W. C. & Wenglarz, R. V. 2006 Erosion and deposition in turbomachinery. J. Propul. Power 22, 350360.CrossRefGoogle Scholar
Hiemenz, K. 1911 Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler Polytech. J. 326, 321410.Google Scholar
Ho, B. P. & Leal, L. G. 1976 Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76, 783799.CrossRefGoogle Scholar
Homann, F. 1936 Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Z. Angew. Math. Mech. 16, 153164.CrossRefGoogle Scholar
Hunt, M. L., Zenit, R., Campbell, C. S. & Brennen, C. E. 2002 Revisiting the 1954 suspension experiments of R. A. Bagnold. J. Fluid Mech. 452, 124.CrossRefGoogle Scholar
Izard, E., Bonometti, T. & Lacaze, L. 2014 Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid. J. Fluid Mech. 747, 422446.CrossRefGoogle Scholar
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle–wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Kempe, T. & Fröhlich, J. 2012 An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231, 36633684.CrossRefGoogle Scholar
Leal, L. G. 2007 Advanced Transport Phenomena. Cambridge University Press.CrossRefGoogle Scholar
Legendre, D., Zenit, R., Daniel, C. & Guiraud, P. 2006 A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid. Chem. Engng Sci. 61, 35433549.CrossRefGoogle Scholar
Loisel, V., Abbas, M., Masbernat, O. & Climent, E. 2015 Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow. Phys. Fluids 27, 123304.CrossRefGoogle Scholar
Lovalenti, P. M. & Brady, J. F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.CrossRefGoogle Scholar
Magnaudet, J. 2003 Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. J. Fluid Mech. 485, 115142.CrossRefGoogle Scholar
Magnaudet, J. & Abbas, M. 2020 Near-wall forces on a neutrally-buoyant spherical particle in an axisymmetric stagnation-point flow. J. Fluid Mech. (under revision).Google Scholar
Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97135.CrossRefGoogle Scholar
Matas, J. P., Morris, J. F. & Guazzelli, E. 2003 Transition to turbulence in particulate pipe flow. Phys. Rev. Lett. 90, 014501.CrossRefGoogle ScholarPubMed
Matas, J. P., Morris, J. F. & Guazzelli, E. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
Maynard, A. B. & Marshall, J. S. 2012 Force on a small particle attached to a plane wall in a Hiemenz straining flow. Trans. ASME J. Fluids Engng 134, 114502.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Mongruel, A., Lamriben, C., Yahiaoui, S. & Feuillebois, F. 2010 The approach of a sphere to a wall at finite Reynolds number. J. Fluid Mech. 661, 229238.CrossRefGoogle Scholar
Pierson, J. L. & Magnaudet, J. 2018 Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics. J. Fluid Mech. 835, 808851.CrossRefGoogle Scholar
Rallabandi, B., Hilgenfeldt, S. & Stone, H. A. 2017 Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow. J. Fluid Mech. 818, 407434.CrossRefGoogle Scholar
Rivero, M., Magnaudet, J. & Fabre, J. 1991 New results on the forces exerted on a spherical body by an accelerated flow. C. R. Acad. Sci. Paris II-B 312, 14991506.Google Scholar
Segré, G. & Silberberg, A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136157.CrossRefGoogle Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.CrossRefGoogle Scholar
Vasseur, P. & Cox, R. G. 1976 The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78, 385413.CrossRefGoogle Scholar
Vigolo, D., Griffiths, I. M., Radl, S. & Stone, H. A. 2013 An experimental and theoretical investigation of particle–wall impacts in a T-junction. J. Fluid Mech. 727, 236255.CrossRefGoogle Scholar
Wang, G., Abbas, M. & Climent, E. 2017 Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow. Phys. Rev. Fluids 2, 084302.CrossRefGoogle Scholar
Zade, S., Costa, P., Fornari, W., Lundell, F. & Brandt, L. 2018 Experimental investigation of turbulent suspensions of spherical particles in a square duct. J. Fluid Mech. 857, 748783.CrossRefGoogle Scholar