Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-14T10:27:20.113Z Has data issue: false hasContentIssue false

Negative refraction of water waves by hyperbolic metamaterials

Published online by Cambridge University Press:  19 April 2023

Leo-Paul Euvé*
Affiliation:
PMMH, ESPCI, Sorbonne Université, Université PSL, 1 rue Jussieu, 75005 Paris, France
Kim Pham*
Affiliation:
IMSIA, CNRS, EDF, CEA, ENSTA Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91732 Palaiseau, France
Agnès Maurel*
Affiliation:
ESPCI Paris, Institut Langevin, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
*

Abstract

We study the propagation of water waves in a three-dimensional device alternating open canals and resonant canals with subwavelength resonances. The dispersion of water waves in such a medium is obtained by analysing the full three-dimensional problem and combining Bloch–Floquet analysis with an asymptotic technique. We obtain the closed forms of the dispersions for resonant canals containing one or two resonators, which depend on only two functions associated with symmetric and antisymmetric modes, and on a geometric parameter analogous to the hopping parameter in topological systems. The analysis of the complete band structure reveals frequency ranges alternating between elliptical and hyperbolic dispersions; in particular, the hyperbolic regime gives rise to a negative effective water depth with a consequent negative refraction. Throughout the course of our study, our theoretical results are validated by comparison with numerical calculations of the full three-dimensional problem.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anglart, A. 2021 Experimental study and modeling of metamaterials for water surface waves. PhD thesis, Université Paris Sciences et Lettres.Google Scholar
Carter, B. 2012 Water-wave propagation through very large floating structures. PhD thesis, Loughborough University.CrossRefGoogle Scholar
Chou, T. 1998 Band structure of surface flexural–gravity waves along periodic interfaces. J. Fluid Mech. 369, 333350.CrossRefGoogle Scholar
Coutant, A., Sivadon, A., Zheng, L., Achilleos, V., Richoux, O., Theocharis, G. & Pagneux, V. 2021 Acoustic Su–Schrieffer–Heeger lattice: direct mapping of acoustic waveguides to the Su–Schrieffer–Heeger model. Phys. Rev. B 103 (22), 224309.CrossRefGoogle Scholar
Davies, A.G., Guazzelli, E. & Belzons, M. 1989 The propagation of long waves over an undulating bed. Phys. Fluids A 1 (8), 13311340.10.1063/1.857308CrossRefGoogle Scholar
Dyachenko, P.N., Molesky, S., Petrov, A.Y., Störmer, M., Krekeler, T., Lang, S., Ritter, M., Jacob, Z. & Eich, M. 2016 Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 7 (1), 18.10.1038/ncomms11809CrossRefGoogle ScholarPubMed
Euvé, L.-P., Pham, K., Petitjeans, P., Pagneux, V. & Maurel, A. 2021 a Time domain modelling of a Helmholtz resonator analogue for water waves. J. Fluid Mech. 920, A22.10.1017/jfm.2021.450CrossRefGoogle Scholar
Euvé, L.-P., Piesniewska, N., Maurel, A., Pham, K., Petitjeans, P. & Pagneux, V. 2021 b Control of the swell by an array of Helmholtz resonators. Crystals 11 (5), 520.CrossRefGoogle Scholar
Evans, D.V. & Porter, R. 1999 Trapping and near-trapping by arrays of cylinders in waves. J. Engng Maths 35 (1), 149179.CrossRefGoogle Scholar
Farhat, M., Guenneau, S., Enoch, S. & Movchan, A. 2010 All-angle-negative-refraction and ultra-refraction for liquid surface waves in 2D phononic crystals. J. Comput. Appl. Maths 234 (6), 20112019.CrossRefGoogle Scholar
Farhat, M., Guenneau, S., Enoch, S., Tayeb, G., Movchan, A.B. & Movchan, N.V. 2008 Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of nearly touching rigid square cylinders. Phys. Rev. E 77 (4), 046308.CrossRefGoogle ScholarPubMed
Hu, X., Shen, Y., Liu, X., Fu, R. & Zi, J. 2004 Superlensing effect in liquid surface waves. Phys. Rev. E 69 (3), 030201.CrossRefGoogle ScholarPubMed
Hu, X., Shen, Y., Liu, X., Fu, R., Zi, J., Jiang, X. & Feng, S. 2003 Band structures and band gaps of liquid surface waves propagating through an infinite array of cylinders. Phys. Rev. E 68 (3), 037301.CrossRefGoogle ScholarPubMed
Huang, J. & Porter, R. 2023 Water wave propagation through arrays of closely-spaced surface-piercing vertical barriers. J. Fluid Mech. 960, A20.CrossRefGoogle Scholar
Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T. & Kawakami, S. 1998 Superprism phenomena in photonic crystals. Phys. Rev. B 58 (16), R10096.CrossRefGoogle Scholar
Laforge, N., Laude, V., Chollet, F., Khelif, A., Kadic, M., Guo, Y. & Fleury, R. 2019 Observation of topological gravity-capillary waves in a water wave crystal. New J. Phys. 21 (8), 083031.CrossRefGoogle Scholar
Linton, C.M. 2011 Water waves over arrays of horizontal cylinders: band gaps and Bragg resonance. J. Fluid Mech. 670, 504526.CrossRefGoogle Scholar
Makwana, M.P., Laforge, N., Craster, R.V., Dupont, G., Guenneau, S., Laude, V. & Kadic, M. 2020 Experimental observations of topologically guided water waves within non-hexagonal structures. Appl. Phys. Lett. 116 (13), 131603.CrossRefGoogle Scholar
Marigo, J.-J. & Maurel, A. 2017 Second order homogenization of subwavelength stratified media including finite size effect. SIAM J. Appl. Maths 77 (2), 721743.CrossRefGoogle Scholar
Marigo, J.-J., Maurel, A. & Pham, K. 2023 Negative refraction in a single-phase flexural metamaterial with hyperbolic dispersion. J. Mech. Phys. Solids 170, 105126.CrossRefGoogle Scholar
Maurel, A., Pham, K. & Marigo, J.-J. 2019 Scattering of gravity waves by a periodically structured ridge of finite extent. J. Fluid Mech. 871, 350376.CrossRefGoogle Scholar
McIver, P. 2000 Water-wave propagation through an infinite array of cylindrical structures. J. Fluid Mech. 424, 101125.CrossRefGoogle Scholar
Mei, C.C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.CrossRefGoogle Scholar
Mercier, J.-F., Cordero, M.-L., Félix, S., Ourir, A. & Maurel, A. 2015 Classical homogenization to analyse the dispersion relations of spoof plasmons with geometrical and compositional effects. Proc. R. Soc. A 471 (2182), 20150472.CrossRefGoogle Scholar
Meylan, M.H., Bennetts, L.G., Mosig, J.E.M., Rogers, W.E., Doble, M.J. & Peter, M.A. 2018 Dispersion relations, power laws, and energy loss for waves in the marginal ice zone. J. Geophys. Res. 123 (5), 33223335.CrossRefGoogle Scholar
Porter, R. 2021 Plate arrays as a perfectly-transmitting negative-refraction metamaterial. Wave Motion 100, 102673.CrossRefGoogle Scholar
Porter, R. & Marangos, C. 2022 Water wave scattering by a structured ridge on the sea bed. Ocean Engng 256, 111451.CrossRefGoogle Scholar
Porter, R. & Porter, D. 2003 Scattered and free waves over periodic beds. J. Fluid Mech. 483, 129163.CrossRefGoogle Scholar
Schnute, J.T. 1967 Scattering of surface waves by submerged circular cylinders. Part II. Scattering by an infinite array of cylinders. Tech. Rep. Department of Mathematics, Stanford University.Google Scholar
Veselago, V.G. 1968 Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities. Sov. Phys. Uspekhi 10 (4), 504509.CrossRefGoogle Scholar
Wu, S. & Mei, J. 2018 Double Dirac cones and zero-refractive-index media in water waves. Europhys. Lett. 123 (5), 59001.CrossRefGoogle Scholar
Yang, Z., Gao, F. & Zhang, B. 2016 Topological water wave states in a one-dimensional structure. Sci. Rep. 6 (1), 16.Google Scholar
Zheng, L.-Y., Achilleos, V., Richoux, O., Theocharis, G. & Pagneux, V. 2019 Observation of edge waves in a two-dimensional Su–Schrieffer–Heeger acoustic network. Phys. Rev. Appl. 12 (3), 034014.CrossRefGoogle Scholar
Zhou Hagström, J., Maurel, A. & Pham, K. 2021 The interplay between Fano and Fabry–Pérot resonances in dual-period metagratings. Proc. R. Soc. A 477 (2255), 20210632.CrossRefGoogle Scholar