Skip to main content
    • Aa
    • Aa

Nonlinear effects in reflecting and colliding internal wave beams

  • ALI TABAEI (a1), T. R. AKYLAS (a2) and KEVIN G. LAMB (a3)

Using small-amplitude expansions, we discuss nonlinear effects in the reflection from a sloping wall of a time-harmonic (frequency $\omega$) plane-wave beam of finite cross-section in a uniformly stratified Boussinesq fluid with constant buoyancy frequency $N_{0}$. The linear solution features the incident and a reflected beam, also of frequency $\omega$, that is found on the same (opposite) side to the vertical as the incident beam if the angle of incidence relative to the horizontal is less (greater) than the wall inclination. As each of these beams is an exact nonlinear solution, nonlinear interactions are confined solely in the vicinity of the wall where the two beams meet. At higher orders, this interaction region acts as a source of a mean and higher-harmonic disturbances with frequencies $n\omega$ ($n\,{=}\,2,3,\ldots$); for $n\omega\,{<}\,N_{0}$ the latter radiate in the far field, forming additional reflected beams along $\sin^{-1}(n\omega/N_{0})$ to the horizontal. Depending on the flow geometry, higher-harmonic beams can be found on the opposite side of the vertical from the primary reflected beam. Using the same approach, we also discuss collisions of two beams propagating in different directions. Nonlinear interactions in the vicinity of the collision region induce secondary beams with frequencies equal to the sum and difference of those of the colliding beams. The predictions of the steady-state theory are illustrated by specific examples and compared against unsteady numerical simulations.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 49 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.