Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T20:36:58.171Z Has data issue: false hasContentIssue false

On the critical free-surface flow over localised topography

Published online by Cambridge University Press:  26 October 2017

J. S. Keeler*
Affiliation:
Department of Mathematics, University of East Anglia, NorwichNR4 7TJ, UK Department of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
B. J. Binder
Affiliation:
Department of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
M. G. Blyth
Affiliation:
Department of Mathematics, University of East Anglia, NorwichNR4 7TJ, UK
*
Email address for correspondence: j.keeler@uea.ac.uk

Abstract

Flow over bottom topography at critical Froude number is examined with a focus on steady, forced solitary wave solutions with algebraic decay in the far field, and their stability. Using the forced Korteweg–de Vries (fKdV) equation the weakly nonlinear steady solution space is examined in detail for the particular case of a Gaussian dip using a combination of asymptotic analysis and numerical computations. Non-uniqueness is established and a seemingly infinite set of steady solutions is uncovered. Non-uniqueness is also demonstrated for the fully nonlinear problem via boundary-integral calculations. It is shown analytically that critical flow solutions have algebraic decay in the far field both for the fKdV equation and for the fully nonlinear problem and, moreover, that the leading-order form of the decay is the same in both cases. The linear stability of the steady fKdV solutions is examined via eigenvalue computations and by a numerical study of the initial value fKdV problem. It is shown that there exists a linearly stable steady solution in which the deflection from the otherwise uniform surface level is everywhere negative.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. US Department of Commerce.Google Scholar
Akylas, T. R. 1984 On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech. 141, 455466.CrossRefGoogle Scholar
Akylas, T. R., Dias, F. & Grimshaw, R. H. J. 1998 The effect of the induced mean flow on solitary waves in deep water. J. Fluid Mech. 355, 317328.Google Scholar
Alias, A., Grimshaw, R. H. J. & Khusnutdinova, K. R. 2013 On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations. Chaos 23, 023121.CrossRefGoogle Scholar
Baines, G. B. 1977 Upstream influence and Long’s model in stratified flows. J. Fluid Mech. 82, 147159.Google Scholar
Baines, G. B. 1984 A unifed description of two-layer flow over topography. J. Fluid Mech. 146, 127167.CrossRefGoogle Scholar
Barashenkov, I. V. & Zemlyanaya, E. V. 2000 Oscillatory instabilities of gap solitions: a numerical study. Comput. Phys. Commun. 172, 2227.CrossRefGoogle Scholar
Bender, C. M. & Orszag, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers I. Springer.CrossRefGoogle Scholar
Benjamin, T. B., Bona, J. L. & Mahony, J. J. 1972 Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. Lond. 272 (1220), 4778.Google Scholar
Binder, B. J., Blyth, M. G. & Balasuriya, S. 2014 Non-uniqueness of steady free-surface flow at critical Froude number. Europhys. Lett. 105, 44003.CrossRefGoogle Scholar
Bishop, M. J. 2004 A posteriori evaluation of strategies of management: the effectiveness of no-wash zones in minimizing the impacts of boat-wash on macrobenthic infauna. Environ. Manage. 34 (1), 140149.CrossRefGoogle ScholarPubMed
Bishop, M. J. & Chapman, M. G. 2004 Managerial decisions as experiments: an opportunity to determine the ecological impact of boat-generated waves on macrobenthic infauna. Estuar. Coast. Shelf Sci. 61 (4), 613622.CrossRefGoogle Scholar
Blyth, M. G. & Părău, E. I. 2016 The stability of capillary waves on fluid sheets. J. Fluid Mech. 806, 534.CrossRefGoogle Scholar
Boyd, J. P. 2000 Chebyshev and Fourier Spectral Methods. Dover Publications.Google Scholar
Bridges, T. J., Derks, G. & Gottwald, G. A. 2002 Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Physica D 172, 190216.Google Scholar
Camassa, R. & Wu, T. Y-T. 1991 Stability of forced steady solitary waves. Phil. Trans. R. Soc. Lond. 10, 429466.Google Scholar
Chang, H.-H. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films. Elsevier.Google Scholar
Chardard, R., Dias, F., Nyguyen, H. Y. & Vanden-Broeck, J-M. 2011 Stability of some stationary soutions to the forced KdV equation with one or two bumps. J. Engng Maths 70, 175189.Google Scholar
Choi, W. & Camassa, R. 1999 Exact evolution equations for surface waves. J. Engng Mech. ASCE 125 (7), 756760.CrossRefGoogle Scholar
Chugunova, M. & Pelinovsky, D. 2010 Count of eigenvalues in the generalized eigenvalue problem. J. Math. Phys. 51 (5), 052901.CrossRefGoogle Scholar
Coddington, E. A. & Levinson, N. 1955 Theory of Ordinary Differential Equations. Tata McGraw-Hill Education.Google Scholar
Dias, F. & Vanden-Broeck, J. M. 2002 Generalised critical free-surface flows. J. Engng Maths 42, 291302.CrossRefGoogle Scholar
Drazin, P. G. & Johnson, R. S. 1989 Solitons: An Introduction. Cambridge University Press.Google Scholar
Ee, B. K., Grimshaw, R. H. J., Zhang, D.-H. & Chow, K. W. 2010 Steady transcritical flow over a hole: parametric map of solutions of the forced Korteweg–de Vries equation. Phys. Fluids 22, 056602.Google Scholar
Ellis, J. T., Sherman, D. J., Bauer, B. O. & Hart, J. 2002 Assessing the impact of an organic restoration structure on boat wake energy. J. Coast. Res. 36, 256265.Google Scholar
Grimshaw, R. H. J. & Maleewong, M. 2016 Transcritical flow over two obstacles: forced Korteweg–de Vries framework. J. Fluid Mech. 809, 918940.CrossRefGoogle Scholar
Grimshaw, R. H. J., Zhang, D-H. & Chow, K. W. 2007 Generation of solitary waves by transcritical flow over a step. J. Fluid Mech. 537, 235254.Google Scholar
Grimshaw, R. & Smyth, N. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429464.Google Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Non-linear stability of fluid and plasma equilibria. Phys. Rep. 123, 1116.CrossRefGoogle Scholar
Hunter, J. K. & Vanden-Broeck, J.-M. 1983 Accurate computations for steep solitary waves. J. Fluid Mech. 136, 6371.CrossRefGoogle Scholar
Kapitula, T. & Stefanov, A. 2014 A Hamiltonian–Krein (instability) index theory for solitary waves to KdV-like eigenvalue problems. Stud. Appl. Maths 132 (3), 183211.CrossRefGoogle Scholar
Keeler, J.2017 Free-surface flow over bottom topography. PhD thesis, University of East Anglia.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1977 Quantum Mechanics – Non-Relativistic Theory. Pergamon.Google Scholar
Lighthill, M. J. 1958 An Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80 (04), 721741.CrossRefGoogle Scholar
Malanotte-Rizzoli, P. 1984 Boundary-forced nonlinear planetary radiation. J. Phys. Oceanogr. 14 (6), 10321046.2.0.CO;2>CrossRefGoogle Scholar
Pelinovsky, D. E.2012 Spectral stability of nonlinear waves in KdV-type evolution equations. Preprint, arXiv:1212.3489.Google Scholar
Sandstede, B. 2002 Stability of travelling waves. Handbook Dyn. Sys. 2, 9831055.Google Scholar
Sandstede, B. & Scheel, A. 2000 Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145 (3), 233277.Google Scholar
Smyth, N. F. 1987 Modulation theory solution for resonant flow over topography. Proc. R. Soc. Lond. 409, 7997.Google Scholar
Sun, S.-M. 1997 Some analytical properties of capillary-gravity waves in two-fluid flows of infinite depth. Proc. R. Soc. Lond. A 453, 11531175.CrossRefGoogle Scholar
Tam, A. T., Yu, Z., Kelso, R. M. & Binder, B. J. 2015 Predicting channel bed topography in hydraulic falls. Phys. Fluids 27, 112–106.Google Scholar
Titchmarsh, E. C. 1962 Eigenfunction Expansions Associated with Second Order Differential Equations. Part 1. Oxford University Press.CrossRefGoogle Scholar
Trefethen, L. N. 2000 Spectral Methods in Matlab. Society for Industrial and Applied Mathematics.Google Scholar
Viotti, C., Dutykh, D. & Dias, F. 2014 The conformal-mapping method for surface gravity waves in the presence of variable bathymetry and mean current. Procedia IUTAM 11, 110118.CrossRefGoogle Scholar
Wade, S. L., Binder, B. J., Mattner, T. W. & Denier, J. P. 2014 On the free surface flow of very steep forced solitary waves. J. Fluid Mech. 739, 121.CrossRefGoogle Scholar
Wu, T. Y-T. 1987 Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 184, 7599.CrossRefGoogle Scholar