Skip to main content
×
Home

On the relevance of the lift force in bubbly turbulence

  • IRENE M. MAZZITELLI (a1), DETLEF LOHSE (a1) and FEDERICO TOSCHI (a2) (a3)
Abstract

Microbubble-laden homogeneous and isotropic turbulent flow is investigated by using direct numerical simulation of the three-dimensional Navier–Stokes equations and computing the bubble trajectories with Lagrangian tracking. The bubble motion is calculated by taking into account the effect of fluid acceleration plus added mass, drag, gravity, and in particular the lift force, which had been neglected in many previous simulations. By comparing the results from simulations with and without lift, we find the effect of the lift force to be crucial: for passive bubbles, i.e. bubbles without backreaction on the flow (one-way coupling), the lift enhances the accumulation of bubbles on the downward flow side of vortices, resulting in a considerably reduced rise velocity of bubbles in turbulent flow, compared to still water. This also has consequences for the active bubble case, i.e. for bubbles with backreaction on the flow (two-way coupling): the energy spectrum of the turbulence is modified {non-uniformly}. Because of the combined effect of preferential bubble clustering in downflow zones and the local buoyant transfer, which reduces the vertical fluid velocity fluctuations, large-scale motions (small wavenumbers $k$) are suppressed. In contrast, small-scale motions (large wavenumbers $k$) are enhanced due to the local bubble forcing. The net effect turns out to be a reduction of the energy dissipation rate.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.