Skip to main content Accessibility help
×
×
Home

Onset of convection induced by centrifugal buoyancy in a rotating cavity

  • Diogo B. Pitz (a1), Olaf Marxen (a1) and John W. Chew (a1)
Abstract

Flows induced by centrifugal buoyancy occur in rotating systems in which the centrifugal force is large when compared to other body forces and are of interest for geophysicists and also in engineering problems involving rapid rotation and unstable temperature gradients. In this numerical study we analyse the onset of centrifugal buoyancy in a rotating cylindrical cavity bounded by two plane, insulated disks, adopting a geometrical configuration relevant to fundamental studies of buoyancy-induced flows occurring in gas turbine’s internal air systems. Using linear stability analysis, we obtain critical values of the centrifugal Rayleigh number $Ra$ and corresponding critical azimuthal wavenumbers for the onset of convection for different radius ratios. Using direct numerical simulation, we integrate the solutions starting from a motionless state to which small sinusoidal perturbations are added, and show that nonlinear triadic interactions occur before energy saturation takes place. At the lowest Rayleigh number considered, the final state is a limit-cycle oscillation affected by the presence of the disks, having a spectrum dominated by a certain mode and its harmonics. We show that, for this case, the limit-cycle oscillations only develop when no-slip end walls are present. For the largest $Ra$ considered chaotic motion occurs, but the critical wavenumber obtained from the linear analysis eventually becomes the most energetic even in the turbulent regime.

Copyright
Corresponding author
Email address for correspondence: d.bertapitz@surrey.ac.uk
References
Hide All
Albrecht, T., Blackburn, H. M., Lopez, J. M., Manasseh, R. & Meunier, P. 2015 Triadic resonances in precessing rapidly rotating cylinder flows. J. Fluid Mech. 778, R1.
Alonso, A., Net, M., Mercader, I. & Knobloch, E. 1999 Onset of convection in a rotating annulus with radial gravity and heating. Fluid Dyn. Res. 24 (3), 133145.
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57 (9), 14351458.
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.
Bohn, D., Deuker, E., Emunds, R. & Gorzelitz, V. 1995 Experimental and theoretical investigations of heat transfer in closed gas-filled rotating annuli. Trans. ASME J. Turbomach. 117 (1), 175183.
Busse, F. H. & Carrigan, C. R. 1974 Convection induced by centrifugal buoyancy. J. Fluid Mech. 62 (03), 579592.
Castrejón-Pita, A. A. & Read, P. L. 2007 Baroclinic waves in an air-filled thermally driven rotating annulus. Phys. Rev. E 75 (2), 026301.
Chew, J. W. & Hills, N. J. 2007 Computational fluid dynamics for turbomachinery internal air systems. Phil. Trans. R. Soc. Lond. A 365 (1859), 25872611.
Früh, W.-G. 2014 Amplitude vacillation in baroclinic flows. In Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (ed. von Larcher, T. & Williams, P. D.). Wiley.
Früh, W.-G. & Read, P. L. 1997 Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus. Phil. Trans. R. Soc. Lond. A 355 (1722), 101153.
Hide, R. 1958 An experimental study of thermal convection in a rotating liquid. Phil. Trans. R. Soc. Lond. A 250 (983), 441478.
Hide, R. & Mason, P. J. 1975 Sloping convection in a rotating fluid. Adv. Phys. 24 (1), 47100.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.
King, M. P., Wilson, M. & Owen, J. M. 2007 Rayleigh–Bénard convection in open and closed rotating cavities. Trans. ASME: J. Engng Gas Turbines Power 129 (2), 305311.
Lewis, G. M. & Nagata, W. 2004 Linear stability analysis for the differentially heated rotating annulus. Geophys. Astrophys. Fluid Dyn. 98 (2), 129152.
Or, A. C. & Busse, F. H. 1987 Convection in a rotating cylindrical annulus. Part 2. Transitions to asymmetric and vacillating flow. J. Fluid Mech. 174, 313326.
Owen, J. M. 2010 Thermodynamic analysis of buoyancy-induced flow in rotating cavities. Trans. ASME J. Turbomach. 132 (3), 031006.
Owen, J. M. & Long, C. A. 2015 Review of buoyancy-induced flow in rotating cavities. Trans. ASME J. Turbomach. 137 (11), 111001.
Pitz, D. B., Chew, J. W., Marxen, O. & Hills, N. J. 2017 Direct numerical simulation of rotating cavity flows using a spectral element-Fourier method. Trans. ASME: J. Engng Gas Turbines Power 139 (7), 072602.
Randriamampianina, A., Früh, W.-G., Read, P. L. & Maubert, P. 2006 Direct numerical simulations of bifurcations in an air-filled rotating baroclinic annulus. J. Fluid Mech. 561, 359389.
Read, P. L., Maubert, P., Randriamampianina, A. & Früh, W.-G. 2008 Direct numerical simulation of transitions towards structural vacillation in an air-filled, rotating, baroclinic annulus. Phys. Fluids 20 (4), 044107.
Read, P. L., Pérez, E. P., Moroz, I. M. & Young, R. M. B. 2014 General circulation of planetary atmospheres: insights from rotating annulus and related experiments. In Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (ed. von Larcher, T. & Williams, P. D.). Wiley.
Rossby, H. T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. In Deep Sea Research and Oceanographic Abstracts, vol. 12, pp. 9IN91110IN1416. Elsevier.
Schnaubelt, M. & Busse, F. H. 1992 Convection in a rotating cylindrical annulus. Part 3. Vacillating and spatially modulated flows. J. Fluid Mech. 245, 155173.
Sheard, G. J., Hussam, W. K. & Tsai, T. 2016 Linear stability and energetics of rotating radial horizontal convection. J. Fluid Mech. 795, 135.
Sun, Z., Kifoil, A., Chew, J. W. & Hills, N. J. 2004 Numerical simulation of natural convection in stationary and rotating cavities. In ASME Turbo Expo 2004: Power for Land, Sea, and Air, pp. 381389. American Society of Mechanical Engineers.
Tuckerman, L. S. & Barkley, D. 2000 Bifurcation analysis for timesteppers. In Numerical Methods for Bifurcation Problems and Large-scale Dynamical Systems, pp. 453466. Springer.
Vincze, M., Borchert, S., Achatz, U., von Larcher, T., Baumann, M., Hertel, C., Remmler, S., Beck, T., Alexandrov, K., Egbers, C. et al. 2015 Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics. Meteorologische Zeitschrift 23, 611635.
Zhang, K. & Greed, G. T. 1998 Convection in rotating annulus: an asymptotic theory and numerical solutions. Phys. Fluids 10 (9), 23962404.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed